The study aims to achieve several objectives, including follow-up scientific developments and transformations in the modern concepts of the Holistic Manufacturing System for the purpose of identifying the methods of switching to the entrances of artificial intelligence, and clarifying the mechanism of operation of the genetic algorithm under the Holonic Manufacturing System, to benefit from the advantages of systems and to achieve the maximum savings in time and cost of machines Using the Holistic Manufacturing System method and the Genetic algorithm, which allows for optimal maintenance time and minimizing the total cost, which in turn enables the workers of these machines to control the vacations in them, and based on the intellectual dilemma and to the problem of the field can be asked the question how to achieve the Holistic Manufacturing System using the genetic algorithm ?, and in light of which the importance of the study and its objectives were based on the analytical descriptive method in the theoretical framework. In the practical framework was based on the quantitative approach that used quantitative indicators of the separation line Comparing the results between the HOL method and the genetic algorithm method. After evaluating and testing the data, the data were analyzed using indicators. The results showed that the use of the genetic algorithm helped to reduce the effort, time and cost. It is possible to reach the optimal solution with very few steps when using the genetic algorithm as a random search algorithm. The main recommendations were the adoption of the laboratory management on the genetic algorithm. And the completion of the study with some proposals, the most prominent of which is to conduct further research on the Holistic Manufacturing System using the genetic algorithm and in various industrial and service sectors.
The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreThis paper demonstrates the design of an algorithm to represent the design stages of fixturing system that serve in increasing the flexibility and automation of fixturing system planning for uniform polyhedral part. This system requires building a manufacturing feature recognition algorithm to present or describe inputs such as (configuration of workpiece) and built database system to represents (production plan and fixturing system exiting) to this algorithm. Also knowledge – base system was building or developed to find the best fixturing analysis (workpiece setup, constraints of workpiece and arrangement the contact on this workpiece) to workpiece.
For many years, the construction industry damages have been overlooked such as unreasonable consumption of resources in addition to producing a lot of construction waste but with global awareness growth towards the sustainable development issues, the sustainable construction practices have been adopted, taking into account the environment and human safety. The research aims to propose a management system for construction practices which could be adopted during constructing different types of sustainable buildings besides formulating flowcharts which clarify the required whole phases of sustainable buildings life cycle. The research includes two parts: theoretical part which generally ,handles the sustainability concepts at construction i
... Show MoreAmorphization of drug has been considered as an attractive approach in improving drug solubility and bioavailability. Unlike their crystalline counterparts, amorphous materials lack the long-range order of molecular packing and present the highest energy state of a solid material. Co-amorphous systems (CAM) are an innovative formulation technique by where the amorphous drugs are stabilized via powerful intermolecular interactions by means of a low molecular co-former.
This review highlights the different approaches in the preparation of co-amorphous drug delivery system, the proper selection of the co-formers. In addition, the recent advances in characterization, Industrial scale and formulation will be discussed.
The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreIn this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended use as well as indicating pollution, water quality management and decision making. The application of Water Quality Index
(WQI) with sixteen physicochemical water quality parameters was performed to evaluate the quality of Tigris River water for drinking usage. This was done by subjecting the water samples collected from eight stations in Baghdad city during the period 2004-2010 to comprehensive physicochemical analysis. The sixteen physicochemical parameters included: Turbidity, A
The present study aimed to investigate the effects of alcohol and hot aqueous extracts for leaves of Adhatoda vasica on, first larval instars Musca domestica. They were exposed to the suggested concentrations of alcoholic extract which were (500, 1000, 1500, 2000) PPM while the suggested concentrations of the hot aqueous extracts (500, 1000, 1500, 2000, 2500)PPM. The alcoholic (Methanol) extract of leaves was much effective on to killing the first larval instars of the M. domestica than hot aqueous extract.