Preferred Language
Articles
/
jeasiq-1710
Some Estimation methods for the two models SPSEM and SPSAR for spatially dependent data
...Show More Authors

ABSTRUCT

In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error          ( λ ) in the model (SPSEM), estimated  the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smooth parameter ( h ) according to the cross validation criterion ( CV ), the Local linear two step estimator  after removing the effect of the spatial errors dependence , once using variance- covariance spatial matrix of errors ( Ω )using kernel function(LLEK2) and other through the use of variance- covariance spatial matrix of errors ( Ω* ) using cubic B-Spline estimator (LLECS2), to remove the effect of the spatial errors dependence, also the Local linear two step estimator using Suggested kernel estimator, once using variance- covariance spatial matrix of errors using kernel estimator (SUGK2), and other through the use of variance- covariance spatial matrix of errors using cubic B-Spline estimator (SUGCS2) to removing the effect of the spatial errors dependence.

From the simulation experiment, with a frequency of 1000 times, for three sample sizes, three levels of variance, for two model, and Calculate the matrix of distances between the sites of the observations through the Euclidean distance, the two estimated methods mentioned above were used to estimate (SPSEM) and (SPSAR) models, using the spatial Neighborhoods matrix modified under the Rook Neighboring criteria. Comparing these methods using mean absolute percentage error (MAPE) turns out that the best method for the SPSEM) model is (SUGCS2) method, and for (SPSAR) model is (LLECS2) method.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 01 2013
Journal Name
Toxicon
Methods for simultaneous detection of the cyanotoxins BMAA, DABA, and anatoxin-a in environmental samples
...Show More Authors

View Publication Preview PDF
Scopus (33)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Tue Dec 30 2014
Journal Name
College Of Islamic Sciences
Excuse for ignorance in Islamic law         Financial transactions: (Contemporary Applied Models)
...Show More Authors

The researcher highlighted in his research on an important subject that people need, which is the excuse of ignorance in Islamic law. , As the flag of light and ignorance of darkness. Then the researcher lameness of the reasons for research in this subject as it is one of the assets that should be practiced by the ruler and the judge and the mufti and the diligent and jurisprudent, but the public should identify the issues that ignore ignorance and issues that are not excused even if claimed ignorance.
 Then the researcher concluded the most important results, and recommendations that he wanted to set scientific rules for students of science and Muslims in general, to follow the issues of legitimacy and learn its provisions and i

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 09 2020
Journal Name
Construction Research Congress 2020
Alternative Risk Models for Optimal Investment in Portfolio-Based Community Solar
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Al-khwarizmi Engineering Journal
Comparative Transfer Learning Models for End-to-End Self-Driving Car
...Show More Authors

Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Image data compression by using multiwavelete for color image
...Show More Authors

There are many images you need to large Khoznah space With the continued evolution of storage technology for computers, there is a need nailed required to reduce Alkhoznip space for pictures and image compression in a good way, the conversion method Alamueja

View Publication Preview PDF
Publication Date
Tue Jan 01 2008
Journal Name
2008 15th Asia-pacific Software Engineering Conference
G2Way A Backtracking Strategy for Pairwise Test Data Generation
...Show More Authors

View Publication
Scopus (16)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2017
Journal Name
25th Gis Research Uk Conference
VGI data collection for supplementing official land administration systems
...Show More Authors

This article explores the process of VGI collection by assessing the relative usability and accuracy of a range of different methods (Smartphone GPS, Tablet, and analogue maps) for data collection amongst different demographic and educational groups, and in different geographical contexts. Assessments are made of positional accuracy, completeness, and data collectors’ experiences with reference to the official cadastral data and the administration system in a case-study region of Iraq. Ownership data was validated by crowd agreement. The result shows that successful VGI projects have access to varying data collection methods.

Publication Date
Sun Jan 01 2017
Journal Name
Proceedings Of The Conference “recent Trends In Engineering Sciences And Sustainability”, Baghdad
GNSS positioning techniques for enhancing Google Earth data quality
...Show More Authors

Due to the easily access to the satellite images, Google Earth (GE) images have become more popular than other online virtual globes. However, the popularity of GE is not an indication of its accuracy. A considerable amount of literature has been published on evaluating the positional accuracy of GE data; however there are few studies which have investigated the subject of improving the GE accuracy. In this paper, a practical method for enhancing the horizontal positional accuracy of GE is suggested by establishing ten reference points, in University of Baghdad main campus, using different Global Navigation Satellite System (GNSS) observation techniques: Rapid Static, Post-Processing Kinematic, and Network. Then, the GE image for the study

... Show More
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Compression-based Data Reduction Technique for IoT Sensor Networks
...Show More Authors

Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the

... Show More
View Publication Preview PDF
Scopus (39)
Crossref (27)
Scopus Clarivate Crossref