Preferred Language
Articles
/
jeasiq-1675
Comparison of some methods for estimating the parameters of the binary logistic regression model using the genetic algorithm with practical application
...Show More Authors

Abstract

   Suffering the human because of pressure normal life of exposure to several types of heart disease as a result of due to different factors. Therefore, and in order to find out the case of a death whether or not, are to be modeled using binary logistic regression model

    In this research used, one of the most important models of nonlinear regression models extensive use in the modeling of applications statistical, in terms of heart disease which is the binary logistic regression model. and then estimating the parameters of this model using the statistical estimation methods, another problem will be appears in estimating its parameters, as well as when the number parameters , and to find estimate the parameters using the numerical methods, sometimes does not give optimum solution because it depends on the initial estimators.

   Some standard methods have been proposed and employed after modifying them by using the genetic algorithm approach in estimation to suit the estimation of  the parameters of this of nonlinear regression models, and then making a comparison between two types of the important estimation methods including the standard estimation methods which included the maximum likelihood method, minimum chi-square method, and improved estimation methods developed which by the researcher which included genetic algorithm method depending on the technique estimates , genetic algorithm method depending on the technique estimates , to choose the best method of estimation by default values to estimate parameter multi-linear regression model a method ols and then convert values the real to standardized and different samples sizes during simulation and by using the statistical criteria Mean Squares Error (MSE) for estimators.

    The method is found to be the best one in the first place one among the standard estimation methods, and  method is the best among the important estimation methods for the purpose of estimating the parameters for binary logistic regression model because it has less (MSE) for estimators compared to other methods.

    In the practical side of this study, this model has been used for modeling the own data infected heart disease and estimating the parameters using the method, reached in it by comparing reasons for cases of occurrence death the real with reasons for cases of occurrence death for the estimated to the appropriate model in the modeling of this type of data and extraction the main cause of death is smoking and also the accuracy of the  method in estimating the parameters of the model.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Mar 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Using Truncated Test for Finding the Parameters of Single Sampling Plan under Distribution of Log-Logistic
...Show More Authors

A group of acceptance sampling to testing the products was designed when the life time of an item follows a log-logistics distribution. The minimum number of groups (k) required for a given group size and acceptance number is determined when various values of Consumer’s Risk and test termination time are specified. All the results about these sampling plan and probability of acceptance were explained with tables.

View Publication Preview PDF
Crossref
Publication Date
Sun Jun 08 2025
Journal Name
Al Kut Journal Of Economics And Administrative Sciences
Use of the Bootstrap in the logistic regression model for Breast cancer disease
...Show More Authors

The logistic regression model is one of the oldest and most common of the regression models, and it is known as one of the statistical methods used to describe and estimate the relationship between a dependent random variable and explanatory random variables. Several methods are used to estimate this model, including the bootstrap method, which is one of the estimation methods that depend on the principle of sampling with return, and is represented by a sample reshaping that includes (n) of the elements drawn by randomly returning from (N) from the original data, It is a computational method used to determine the measure of accuracy to estimate the statistics, and for this reason, this method was used to find more accurate estimates. The ma

... Show More
View Publication
Publication Date
Tue Oct 22 2024
Journal Name
Iraqi Statisticians Journal
Inferential Methods for the Dagum Regression Model
...Show More Authors

The Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the ana

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Baghdad Science Journal
Comparison of Some Suggested Estimators Based on Differencing Technique in the Partial Linear Model Using Simulation
...Show More Authors

In this paper new methods were presented based on technique of differences which is the difference- based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized  jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially linear model. As for the nonlinear part represented by the nonparametric function, it was estimated using Nadaraya Watson smoother. The partially linear model was compared using these proposed methods with other estimators based on differencing technique through the MSE comparison criterion in simulation study.

View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Oct 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Application of Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) Method
...Show More Authors

The paper aims is to solve the problem of choosing the appropriate project from several service projects for the Iraqi Martyrs Foundation or arrange them according to the preference within the targeted criteria. this is done by using Multi-Criteria Decision Method (MCDM), which is the method of Multi-Objective Optimization by Ratios Analysis (MOORA) to measure the composite score of performance that each alternative gets and the maximum benefit accruing to the beneficiary and according to the criteria and weights that are calculated by the Analytic Hierarchy Process (AHP). The most important findings of the research and relying on expert opinion are to choose the second project as the best alternative and make an arrangement acco

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Bayes Estimators for the parameter of Rayleigh Distribution with Simulation
...Show More Authors

   A comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared erro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of the statistical methods used to Forecast the size of the Iraqi GDP for the two sectors (public and private) for the period (2025-2016)
...Show More Authors

Gross domestic product (GDP) is an important measure of the size of the economy's production. Economists use this term to determine the extent of decline and growth in the economies of countries. It is also used to determine the order of countries and compare them to each other. The research aims at describing and analyzing the GDP during the period from 1980 to 2015 and for the public and private sectors and then forecasting GDP in subsequent years until 2025. To achieve this goal, two methods were used: linear and nonlinear regression. The second method in the time series analysis of the Box-Jenkins models and the using of statistical package (Minitab17), (GRETLW32)) to extract the results, and then comparing the two methods, T

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of weighted estimated method and proposed method (BEMW) for estimation of semi-parametric model under incomplete data
...Show More Authors

Generally, statistical methods are used in various fields of science, especially in the research field, in which Statistical analysis is carried out by adopting several techniques, according to the nature of the study and its objectives. One of these techniques is building statistical models, which is done through regression models. This technique is considered one of the most important statistical methods for studying the relationship between a dependent variable, also called (the response variable) and the other variables, called covariate variables. This research describes the estimation of the partial linear regression model, as well as the estimation of the “missing at random” values (MAR). Regarding the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
دراسة مقارنة بين بعض الطرائق الحصينة في تقدير معلمات انموذج الانحدار الخطي باستخدام اسلوب المحاكاة التجريبي في حالة وجود بيانات تتضمن مشاهدات شاذة
...Show More Authors

In linear regression, an outlier is an observation with large residual.  In other words, it is an observation whose dependent-variable value is unusual given its values on the predictor variables. An outlier observation may indicate a data entry error or other problem.

An observation with an extreme value on a predictor variable is a point with high leverage. Leverage is a measure of how far an independent variable deviates from its mean. These leverage points can have an effect on the estimate of regression coefficients.

Robust estimation for regression parameters deals with cases that have very high leverage, and cases that are outliers. Robust estimation is essentially a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Estimates Nonparametric In Multiple Regression Analysis Function (Gamma ,Beta)
...Show More Authors

The use of non-parametric models and subsequent estimation methods requires that many of the initial conditions that must be met to represent those models of society under study are appropriate, prompting researchers to look for more flexible models, which are represented by non-parametric models                  

          In this study, the most important and most widespread estimations of the estimation of the nonlinear regression function were investigated using Nadaraya-Watson and Regression Local Ploynomial, which are one of the types of non-linear

... Show More
View Publication Preview PDF
Crossref