Most statistical research generally relies on the study of the behaviour of different phenomena during specific time periods and the use of the results of these studies in the development of appropriate recommendations and decision-making and for the purpose of statistical inference on the parameters of the statistical distribution of life times in The technical staff of most of the manufacturers in the research units of these companies deals with censored data, the main objective of the study of survival is the need to provide information that is the basis for decision making and must clarify the problem and then the goals and limitations of this study and that It may have different possibilities to perform the desired function successfully, and the Bayesian inference is a statistical inference method where the theory of biz is used to construct statistical models and the conclusion of statistical inferences about the parameters of the sample or the statistical community and in this research has reviewed the methods Non-parametric and semi-primary control data of type I using (Dirichlet) processes and sampling (Gibbs Sampler) and comparing them with survival capabilities to demonstrate their efficiency using the two statistical indicators the average of the integral error boxes (IMSE) and the average absolute relative error ( MAPE), the simulation method was used to generate data using different sample sizes (n = 15, 30, 50, 100), and through the results the researcher reached the superiority of the Semiparametric Bayesian on the on Non-parametric
In this article, we developed a new loss function, as the simplification of linear exponential loss function (LINEX) by weighting LINEX function. We derive a scale parameter, reliability and the hazard functions in accordance with upper record values of the Lomax distribution (LD). To study a small sample behavior performance of the proposed loss function using a Monte Carlo simulation, we make a comparison among maximum likelihood estimator, Bayesian estimator by means of LINEX loss function and Bayesian estimator using square error loss (SE) function. The consequences have shown that a modified method is the finest for valuing a scale parameter, reliability and hazard functions.
Abstract
The extremes effects in parameters readings which are BOD (Biological Oxygen Demands) and DO(Dissolved Oxygen) can caused error estimating of the model’s parameters which used to determine the ratio of de oxygenation and re oxygenation of the dissolved oxygen(DO),then that will caused launch big amounts of the sewage pollution water to the rivers and it’s turn is effect in negative form on the ecosystem life and the different types of the water wealth.
As result of what mention before this research came to employees Streeter-Phleps model parameters estimation which are (Kd,Kr) the de oxygenation and re oxygenation ratios on respect
... Show Moreيھدف البحث الى اجراء تقدير دالة المعولية لتوزيــع ويبل ذي المعلمتين بالطرائـق المعلميــة والمتمثلة بـ (NWLSM,RRXM,RRYM,MOM,MLM (، وكذلك اجراء تقدير لدالة المعولية بالطرائق الالمعلمية والمتمثلة بـ . (EM, PLEM, EKMEM, WEKM, MKMM, WMR, MMO, MMT) وتم استخدام اسلوب المحاكاة لغرض المقارنة باستخدام حجوم عينات مختلفة (20,40,60,80,100) والوصول الى افضل الطرائق في التقدير باالعتماد على المؤشر االحصائي متوسط مربعات الخطا التكاملي (IMSE(، وقد توصل البحث الى
... Show MoreThe logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .
The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result. &nbs
... Show MoreIn general, researchers and statisticians in particular have been usually used non-parametric regression models when the parametric methods failed to fulfillment their aim to analyze the models precisely. In this case the parametic methods are useless so they turn to non-parametric methods for its easiness in programming. Non-parametric methods can also used to assume the parametric regression model for subsequent use. Moreover, as an advantage of using non-parametric methods is to solve the problem of Multi-Colinearity between explanatory variables combined with nonlinear data. This problem can be solved by using kernel ridge regression which depend o
... Show MoreAbstract:
One of the important things provided by fuzzy model is to identify the membership functions. In the fuzzy reliability applications with failure functions of the kind who cares that deals with positive variables .There are many types of membership functions studied by many researchers, including triangular membership function, trapezoidal membership function and bell-shaped membership function. In I research we used beta function. Based on this paper study classical method to obtain estimation fuzzy reliability function for both series and parallel systems.
Abstract
The Non - Homogeneous Poisson process is considered as one of the statistical subjects which had an importance in other sciences and a large application in different areas as waiting raws and rectifiable systems method , computer and communication systems and the theory of reliability and many other, also it used in modeling the phenomenon that occurred by unfixed way over time (all events that changed by time).
This research deals with some of the basic concepts that are related to the Non - Homogeneous Poisson process , This research carried out two models of the Non - Homogeneous Poisson process which are the power law model , and Musa –okumto , to estimate th
... Show MoreEstimation stage is one of most important in process of selecting and identification for fit model, this model gives a best results if the good methods of estimation are depended on, one of those methods is Bayes method for estimation the parameters, it puts an assumption that parameter have a distribution.
This paper studies the robustness of estimators of empirical Bayes to know the properties of those estimators.
The aim of this study is to estimate the survival function for the data of lung cancer patients, using parametric methods (Weibull, Gumbel, exponential and log-logistic).
Comparisons between the proposed estimation method have been performed using statistical indicator Akaike information Criterion, Akaike information criterion corrected and Bayesian information Criterion, concluding that the survival function for the lung cancer by using Gumbel distribution model is the best. The expected values of the survival function of all estimation methods that are proposed in this study have been decreasing gradually with increasing failure times for lung cancer patients, which means that there is an opposite relationshi
... Show More