Maulticollinearity is a problem that always occurs when two or more predictor variables are correlated with each other. consist of the breach of one basic assumptions of the ordinary least squares method with biased estimates results, There are several methods which are proposed to handle this problem including the method To address a problem and method To address a problem , In this research a comparisons are employed between the biased method and unbiased method with Bayesian using Gamma distribution method addition to Ordinary Least Square method, We will use the simulation to compare these methods using the mean squares error criteria. The method of biased gave good results by using sizes different samples.
In this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.
The purpose behind building the linear regression model is to describe the real linear relation between any explanatory variable in the model and the dependent one, on the basis of the fact that the dependent variable is a linear function of the explanatory variables and one can use it for prediction and control. This purpose does not cometrue without getting significant, stable and reasonable estimatros for the parameters of the model, specifically regression-coefficients. The researcher found that "RUF" the criterian that he had suggested accurate and sufficient to accomplish that purpose when multicollinearity exists provided that the adequate model that satisfies the standard assumpitions of the error-term can be assigned. It
... Show MoreVariable selection in Poisson regression with high dimensional data has been widely used in recent years. we proposed in this paper using a penalty function that depends on a function named a penalty. An Atan estimator was compared with Lasso and adaptive lasso. A simulation and application show that an Atan estimator has the advantage in the estimation of coefficient and variables selection.
Because of the experience of the mixture problem of high correlation and the existence of linear MultiCollinearity between the explanatory variables, because of the constraint of the unit and the interactions between them in the model, which increases the existence of links between the explanatory variables and this is illustrated by the variance inflation vector (VIF), L-Pseudo component to reduce the bond between the components of the mixture.
To estimate the parameters of the mixture model, we used in our research the use of methods that increase bias and reduce variance, such as the Ridge Regression Method and the Least Absolute Shrinkage and Selection Operator (LASSO) method a
... Show MoreThe study aims to identify the degree of implementation of the coronavirus prevention standards (covid-19) in the kingdom of Saudi Arabia and compare it with the families of intellectual disabilities. The study population consisted of all families residing in the Kingdom of Saudi Arabia. To achieve the objectives of the research, the analytical descriptive approach was employed. The study sample consisted of (372) families, among them (84) families with intellectual disabilities, and (288) families without intellectual disabilities. They were chosen from the Saudi community according to what is available for collection in a simple random way, using the standard criteria for the prevention of coronavirus (Covid- 19) Prepared by the resear
... Show MoreAbstract
The Issue of trade policy is one of the most important topics that researchers have been interested in because of its important role in the economy over the ages. This importance has increased due to the increasing of commercial operations at different levels in both developing and developed countries Foreign trade is one of the means of achieving economic development through the economic surpluses resulting from exports and imports, as it is an important pillar of the economy in general and the Iraqi economy in particular, in light of the transformation process that took place for the Iraqi economy in various fields due to the implement
... Show MoreOver the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame