This study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators of Maximum Likelihood (ML) and Ridge Regression (RR) by using the mean square error (MSE) criterion, where the variance of the Maximum Likelihood (ML) comes in the presence of the problem Multicollinearity between the explanatory variables. In this study, the Monte Carlo simulation was designed to evaluate the performance of estimations using the criterion for comparison, the mean square error (MSE). The simulation results showed important an estimated Liu and superior to the RR and MLE estimator Where the number of explanatory variables is (p=5) and the sample size is (n=100), where the number of explanatory variables is (p=3) and for all sizes, and also when (p=5) for all sizes except size (n=100), the RR regression method is the best.
In this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.
This research includes the application of non-parametric methods in estimating the conditional survival function represented in a method (Turnbull) and (Generalization Turnbull's) using data for Interval censored of breast cancer and two types of treatment, Chemotherapy and radiation therapy and age is continuous variable, The algorithm of estimators was applied through using (MATLAB) and then the use average Mean Square Error (MSE) as amusement to the estimates and the results showed (generalization of Turnbull's) In estimating the conditional survival function and for both treatments ,The estimated survival of the patients does not show very large differences
... Show MoreThe research aims to derive the efficient industrial plans for Al – shaheed public company under risk by using Target MOTAD as a linear alternative model for the quadratic programming models.
The results showed that there had been a sort of (trade- off) between risk and the expected gross margins. And if the studied company strives to get high gross margin, it should tolerate risk and vice versa. So the management of Al- Shaheed Company to be invited to apply the suitable procedures in the production process, in order to get efficient plans that improves it's performance .
This work presents the modeling of the electrical response of monocrystalline photovoltaic module by using five parameters model based on manufacture data-sheet of a solar module that measured in stander test conditions (STC) at radiation 1000W/m² and cell temperature 25 . The model takes into account the series and parallel (shunt) resistance of the module. This paper considers the details of Matlab modeling of the solar module by a developed Simulink model using the basic equations, the first approach was to estimate the parameters: photocurrent Iph, saturation current Is, shunt resistance Rsh, series resistance Rs, ideality factor A at stander test condition (STC) by an ite
... Show MoreHuman interest in negative space has existential roots, in addition to its cognitive value of things. In the environment, it includes space features from facts and activities, as negative space plays an active role in the field of visual perception, and this value comes from the need to absorb vital relationships in its environment, Man represents the positive part of negative space through his presence in this environment, and therefore this is reflected in the design of its types and the function of each element in the design, for the real effectiveness that the elements gain and their impact comes through the negative space that surrounds them and organizes their relationships with other elements, that the orientation is distributed a
... Show MoreThe use of non-parametric models and subsequent estimation methods requires that many of the initial conditions that must be met to represent those models of society under study are appropriate, prompting researchers to look for more flexible models, which are represented by non-parametric models
In this study, the most important and most widespread estimations of the estimation of the nonlinear regression function were investigated using Nadaraya-Watson and Regression Local Ploynomial, which are one of the types of non-linear
... Show MoreIn this paper, an estimate has been made for parameters and the reliability function for Transmuted power function (TPF) distribution through using some estimation methods as proposed new technique for white, percentile, least square, weighted least square and modification moment methods. A simulation was used to generate random data that follow the (TPF) distribution on three experiments (E1 , E2 , E3) of the real values of the parameters, and with sample size (n=10,25,50 and 100) and iteration samples (N=1000), and taking reliability times (0< t < 0) . Comparisons have been made between the obtained results from the estimators using mean square error (MSE). The results showed the
... Show MoreIn this paper, we will provide a proposed method to estimate missing values for the Explanatory variables for Non-Parametric Multiple Regression Model and compare it with the Imputation Arithmetic mean Method, The basis of the idea of this method was based on how to employ the causal relationship between the variables in finding an efficient estimate of the missing value, we rely on the use of the Kernel estimate by Nadaraya – Watson Estimator , and on Least Squared Cross Validation (LSCV) to estimate the Bandwidth, and we use the simulation study to compare between the two methods.
Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and
... Show More