Preferred Language
Articles
/
jeasiq-1598
Comparison of classical method and optimization methods for estimating parameters in nonlinear ordinary differential equation
...Show More Authors

 ABSTRICT:

  This study is concerned with the estimation of constant  and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to estimate the constant parameters. In the third stage, the remaining constant parameters and the time-varying parameters are estimated by using a semi-parametric regression model. This method is compared with the optimization method, which depends on the algorithm of differential evolution algorithm to estimate unknown parameters. The comparison was made using simulations. The results showed that the results were better to the method based on the differential evolution algorithm.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A comparison between Bayesian Method and Full Maximum Likelihood to estimate Poisson regression model hierarchy and its application to the maternal deaths in Baghdad
...Show More Authors

Abstract:

 This research aims to compare Bayesian Method and Full Maximum Likelihood to estimate hierarchical Poisson regression model.

The comparison was done by  simulation  using different sample sizes (n = 30, 60, 120) and different Frequencies (r = 1000, 5000) for the experiments as was the adoption of the  Mean Square Error to compare the preference estimation methods and then choose the best way to appreciate model and concluded that hierarchical Poisson regression model that has been appreciated Full Maximum Likelihood Full Maximum Likelihood  with sample size  (n = 30) is the best to represent the maternal mortality data after it has been reliance value param

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 01 2024
Journal Name
Partial Differential Equations In Applied Mathematics
Perturbation iteration transform method for solving fractional order integro-differential equation
...Show More Authors

View Publication
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Parameters Estimation Methods for the Negative Binomial Regression Model under Multicollinearity Problem by Using Simulation
...Show More Authors

This study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Of Kufa For Mathematics And Computer
Four Points Block Method with Second Derivative for Solving First Order Ordinary Differential Equations
...Show More Authors

Publication Date
Wed May 11 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Some Methods For A single Imputed A missing Observation In Estimating Nonparametric Regression Function
...Show More Authors

In this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.      

View Publication Preview PDF
Crossref
Publication Date
Thu Feb 28 2019
Journal Name
Iraqi Journal Of Science
Approximation Solution of Nonlinear Parabolic Partial Differential Equation via Mixed Galerkin Finite Elements Method with the Crank-Nicolson Scheme
...Show More Authors

The approximate solution of a nonlinear parabolic boundary value problem with variable coefficients (NLPBVPVC) is found by using mixed Galekin finite element method (GFEM) in space variable with Crank Nicolson (C-N) scheme in time variable. The problem is reduced to solve a Galerkin nonlinear algebraic system (NLAS), which is solved by applying the predictor and the corrector method (PCM), which transforms the NLAS into a Galerkin linear algebraic system (LAS). This LAS is solved once using the Cholesky technique (CHT) as it appears in the MATLAB package and once again using the General Cholesky Reduction Order Technique (GCHROT), the GCHROT is employed here at first time to play an important role for saving a massive time. Illustrative

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization and Prediction of Process Parameters in SPIF that Affecting on Surface Quality Using Simulated Annealing Algorithm
...Show More Authors

Incremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms by this way the sheet with pure deformation stretching. In SPIF process, the research is concentrate on the development of predict models for estimate the product quality. Using simulated annealing algorithm (SAA), Surface quality in SPIF has been modeled. In the development of this predictive model, spindle speed, feed rate and step depth have been considered as model parameters. Maximum peak height (Rz) and Arithmetic mean surface roughness (Ra) are used as response parameter to assess th

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jan 30 2019
Journal Name
Journal Of The College Of Education For Women
Establishment of method and the development of the teaching methods in the late abbissid period and it s impact on the contemporary leading methods
...Show More Authors

Every researcher must say that the world in continually progress toward the best and that
the Arab and Islamic civilization had produced much of systems and virtuous educational
practices which raised from Islamic heritage. This nation was not isolated from external
world, but it was made a clear active for promote the banner of other nations which entered
under her influence to promote Islamic banner and Muslims. Consequently also Muslims are
affected and influenced, this resulted a clear impact in the civilization and educational
ideology especially in the contemporary teaching methods.

View Publication Preview PDF
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Finite Difference Method for Two-Dimensional Fractional Partial Differential Equation with parameter
...Show More Authors

 In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.

View Publication Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref