Preferred Language
Articles
/
jeasiq-1597
A Novel Invasive Weed Optimization Algorithm (IWO) by Whale Optimization Algorithm(WOA) to solve Large Scale Optimization Problems
...Show More Authors

Abstract  

  In this work, two algorithms of Metaheuristic algorithms were hybridized. The first is Invasive Weed Optimization algorithm (IWO) it is a numerical stochastic optimization algorithm and the second is Whale Optimization Algorithm (WOA) it is an algorithm based on the intelligence of swarms and community intelligence. Invasive Weed Optimization Algorithm (IWO) is an algorithm inspired by nature and specifically from the colonizing weeds behavior of weeds, first proposed in 2006 by Mehrabian and Lucas. Due to their strength and adaptability, weeds pose a serious threat to cultivated plants, making them a threat to the cultivation process. The behavior of these weeds has been simulated and used in Invasive Weed Optimization Algorithm (IWO), as for the Whale Optimization Algorithm (WOA) uses the intelligence of the swarms to reach the goal and achieve the best solution, which simulates the unique hunting behavior of humpback whales, which is called fishing by bubble trap hunting by creating distinctive bubbles along a circle or a path in the form of 9 has appeared for the first time in 2016 by Mirjalili and Lewis. In order to benefit from the intelligence of the flocks and to avoid falling into local solutions, the new hybridization between the IWO and WOA algorithm was proposed to launch the new hybrid algorithm (IWOWOA). The new hybrid algorithm (IWOWOA) was applied on 23 functions of large scale optimization problems, The proposed algorithm showed very high efficiency in solving these functions. The proposed algorithm was able to reach the optimal solutions by achieving the minimum value of most of these functions. This algorithm was compared with the basic algorithms IWO, WOA and two algorithms that follow the swarm system these algorithms are particle swarm optimization (PSO) and chicken swarm optimization (CSO) [7], they have been statistically tested by calculating the mean arithmetic μ and standard deviation σ for these functions.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Computer And Communications
Pathfinding in Strategy Games and Maze Solving Using A* Search Algorithm
...Show More Authors

View Publication
Crossref (17)
Crossref
Publication Date
Wed Oct 12 2022
Journal Name
Axioms
Razy: A String Matching Algorithm for Automatic Analysis of Pathological Reports
...Show More Authors

Pathology reports are necessary for specialists to make an appropriate diagnosis of diseases in general and blood diseases in particular. Therefore, specialists check blood cells and other blood details. Thus, to diagnose a disease, specialists must analyze the factors of the patient’s blood and medical history. Generally, doctors have tended to use intelligent agents to help them with CBC analysis. However, these agents need analytical tools to extract the parameters (CBC parameters) employed in the prediction of the development of life-threatening bacteremia and offer prognostic data. Therefore, this paper proposes an enhancement to the Rabin–Karp algorithm and then mixes it with the fuzzy ratio to make this algorithm suitable

... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
On-Line Navigational Problem of a Mobile Robot Using Genetic Algorithm
...Show More Authors

Publication Date
Sun Dec 01 2019
Journal Name
Applied Soft Computing
A new evolutionary multi-objective community mining algorithm for signed networks
...Show More Authors

View Publication
Scopus (8)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Mar 16 2022
Journal Name
2022 Muthanna International Conference On Engineering Science And Technology (micest)
A hybrid feature selection technique using chi-square with genetic algorithm
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Oct 18 2015
Journal Name
International Journal Of Pure And Applied Mathematics
A MODIFIED FUZZY MULTI-OBJECTIVE LINEAR PROGRAMMING TO SOLVE AGGREGATE PRODUCTION PLANNING
...Show More Authors

This paper develops a fuzzy multi-objective model for solving aggregate production planning problems that contain multiple products and multiple periods in uncertain environments. We seek to minimize total production cost and total labor cost. We adopted a new method that utilizes a Zimmermans approach to determine the tolerance and aspiration levels. The actual performance of an industrial company was used to prove the feasibility of the proposed model. The proposed model shows that the method is useful, generalizable, and can be applied to APP problems with other parameters.

View Publication Preview PDF
Scopus (10)
Crossref (2)
Scopus Crossref
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Simulation Model of Wind Turbine Power Control System with Fuzzy Regulation by Mamdani and Larsen Algorithms
...Show More Authors

Abstract 

     The aim of this work is to create a power control system for wind turbines based on fuzzy logic. Three power control loop was considered including: changing the pitch angle of  the blade, changing the length of the blade and turning the nacelle. The stochastic law was given for changes and instant inaccurate assessment of wind conditions changes. Two different algorithms were used for fuzzy inference in the control loop, the Mamdani and Larsen algorithms. These two different algorithms are materialized and developed in this study in Matlab-Fuzzy logic toolbox which has been practically implemented using necessary intelligent control system in electrical engineerin

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Mar 01 2017
Journal Name
International Communications In Heat And Mass Transfer
Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al 2 O 3 nanofluids by NSGA-II using ANN
...Show More Authors

In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and

... Show More
Crossref (116)
Crossref
Publication Date
Sat Dec 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Low Cost Hardware Back Propagation Algorithm
...Show More Authors

The first successful implementation of Artificial Neural Networks (ANNs) was published a little over a decade ago. It is time to review the progress that has been made in this research area. This paper provides taxonomy for classifying Field Programmable Gate Arrays (FPGAs) implementation of ANNs. Different implementation techniques and design issues are discussed, such as obtaining a suitable activation function and numerical truncation technique trade-off, the improvement of the learning algorithm to reduce the cost of neuron and in result the total cost and the total speed of the complete ANN. Finally, the implementation of a complete very fast circuit for the pattern of English Digit Numbers NN has four layers of 70 nodes (neurons) o

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Low Cost Hardware Back Propagation Algorithm
...Show More Authors

The first successful implementation of Artificial Neural Networks (ANNs) was published a little over a decade ago. It is time to review the progress that has been made in this research area. This paper provides taxonomy for classifying Field Programmable Gate Arrays (FPGAs) implementation of ANNs. Different implementation techniques and design issues are discussed, such as obtaining a suitable activation function and numerical truncation technique trade-off, the improvement of the learning algorithm to reduce the cost of neuron and in result the total cost and the total speed of the complete ANN. Finally, the implementation of a complete very fast circuit for the pattern of English Digit Numbers NN has four layers of 70 nodes (neurons) o

... Show More
View Publication Preview PDF