Preferred Language
Articles
/
jeasiq-1595
Comparison of Some Methods for Estimating the Scheff'e Model of the Mixture
...Show More Authors

Because of the experience of the mixture problem of high correlation and the existence of linear MultiCollinearity between the explanatory variables, because of the constraint of the unit and the interactions between them in the model, which increases the existence of links between the explanatory variables and this is illustrated by the variance inflation vector (VIF), L-Pseudo component to reduce the bond between the components of the mixture.

    To estimate the parameters of the mixture model, we used in our research the use of methods that increase bias and reduce variance, such as the Ridge Regression Method and the Least Absolute Shrinkage and Selection Operator (LASSO) method as well as the Elastic Net estimation method, In R the comparison criterion is the absolute mean percent error (MAPE).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Hurst exponent estimation methods
...Show More Authors

Through recent years many researchers have developed methods to estimate the self-similarity and long memory parameter that is best known as the Hurst parameter. In this paper, we set a comparison between nine different methods. Most of them use the deviations slope to find an estimate for the Hurst parameter like Rescaled range (R/S), Aggregate Variance (AV), and Absolute moments (AM), and some depend on filtration technique like Discrete Variations (DV), Variance versus level using wavelets (VVL) and Second-order discrete derivative using wavelets (SODDW) were the comparison set by a simulation study to find the most efficient method through MASE. The results of simulation experiments were shown that the performance of the meth

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Oct 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some of reliability and Hazard estimation methods for Rayleigh logarithmic distribution using simulation with application
...Show More Authors

The question of estimation took a great interest in some engineering, statistical applications, various applied, human sciences, the methods provided by it helped to identify and accurately the many random processes.

In this paper, methods were used through which the reliability function, risk function, and estimation of the distribution parameters were used, and the methods are (Moment Method, Maximum Likelihood Method), where an experimental study was conducted using a simulation method for the purpose of comparing the methods to show which of these methods are competent in practical application This is based on the observations generated from the Rayleigh logarithmic distribution (RL) with sample sizes

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Oct 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between method penalized quasi- likelihood and Marginal quasi-likelihood in estimating parameters of the multilevel binary model
...Show More Authors

Multilevel models are among the most important models widely used in the application and analysis of data that are characterized by the fact that observations take a hierarchical form, In our research we examined the multilevel logistic regression model (intercept random and slope random model) , here the importance of the research highlights that the usual regression models calculate the total variance of the model and its inability to read variance and variations between levels ,however in the case of multi-level regression models, the calculation of  the total variance is inaccurate and therefore these models calculate the variations for each level of the model, Where the research aims to estimate the parameters of this m

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
"Compared some of the semi-parametric methods in analysis of single index model "
...Show More Authors

As the process of  estimate for model and variable selection significant is a crucial process in the semi-parametric modeling At the beginning of the modeling process often At there are many explanatory variables to Avoid the loss of any explanatory elements may be important as a result , the selection of significant variables become necessary , so the process of variable selection is not intended to simplifying  model complexity explanation , and also predicting. In this research was to use some of the semi-parametric methods (LASSO-MAVE , MAVE and The proposal method (Adaptive LASSO-MAVE) for variable selection and estimate semi-parametric single index model (SSIM) at the same time .

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Semiparametric Bayesian Method with Classical Method for Estimating Systems Reliability using Simulation Procedure
...Show More Authors

               In this research, the semiparametric Bayesian method is compared with the classical  method to  estimate reliability function of three  systems :  k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Aug 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of the performance of some r- (k,d) class estimators with the (PCTP) estimator that used in estimating the general linear regression model in the presence of autocorrelation and multicollinearity problems at the same time "
...Show More Authors

In the analysis of multiple linear regression, the problem of multicollinearity and auto-correlation drew the attention of many researchers, and given the appearance of these two problems together and their bad effect on the estimation, some of the researchers found new methods to address these two problems together at the same time. In this research a comparison for the performance of the Principal Components Two Parameter estimator (PCTP) and The (r-k) class estimator and the r-(k,d) class estimator by conducting a simulation study and through the results and under the mean square error (MSE) criterion to find the best way to address the two problems together. The results showed that the r-(k,d) class estimator is the best esti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Compared of estimating two methods for nonparametric function to cluster data for the white blood cells to leukemia patients
...Show More Authors

 

Abstract:                                        

   We can notice cluster data in social, health and behavioral sciences, so this type of data have a link between its observations and we can express these clusters through the relationship between measurements on units within the same group.

    In this research, I estimate the reliability function of cluster function by using the seemingly unrelate

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some robust methods to estimate parameters of partial least squares regression (PLSR)
...Show More Authors

   The technology of reducing dimensions and choosing variables are very important topics in statistical analysis to multivariate. When two or more of the predictor variables are linked in the complete or incomplete regression relationships, a problem of multicollinearity are occurred which consist of the breach of one basic assumptions of the ordinary least squares method with incorrect estimates results.

 There are several methods proposed to address this problem, including the partial least squares (PLS), used to reduce dimensional regression analysis. By using linear transformations that convert a set of variables associated with a high link to a set of new independent variables and unr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Ridge regression method with some classical methods to estimate the parameters of Lomax distribution by simulation
...Show More Authors

Abstract

In this research provide theoretical aspects of one of the most important statistical distributions which it is Lomax, which has many applications in several areas, set of estimation methods was used(MLE,LSE,GWPM) and compare with (RRE) estimation method ,in order to find out best estimation method set of simulation experiment (36) with many replications  in order  to get mean square error and used it to make compare , simulation experiment  contrast with (estimation method, sample size ,value of location and shape parameter) results show that estimation method effected by simulation experiment factors and ability of using other estimation methods such as(Shrinkage, jackknif

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of estimations methods of the entropy function to the random coefficients for two models: the general regression and swamy of the panel data
...Show More Authors

In this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.

The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu

... Show More
View Publication Preview PDF
Crossref