Preferred Language
Articles
/
jeasiq-155
Use Simulation To Differentiate Between Some Modern Methods To the Model GM(1,1) To Find Missing Values And Estimate Parameters With A Practical Application
...Show More Authors

Abstract

       The grey system model GM(1,1) is the model of the prediction of the time series and the basis of the grey theory. This research presents the methods for estimating parameters of the grey model GM(1,1) is the accumulative method (ACC), the exponential method (EXP), modified exponential method (Mod EXP) and the Particle Swarm Optimization method (PSO). These methods were compared based on the Mean square error (MSE) and the Mean Absolute percentage error (MAPE) as a basis comparator and the simulation method was adopted for the best of the four methods, The best method was obtained and then applied to real data. This data represents the consumption rate of two types of oils a heavy fuel (HFO) and diesel fuel (D.O) and the use of tests to confirm the accuracy of the grey model. After obtaining the results, the best method to estimate the parameters of the grey model GM(1,1) is the method of the Particle Swarm Optimization method (PSO) It has been used to treatment the missing values ​​in the data and in the prediction where it has been shown to have the best results

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 30 2008
Journal Name
Al-kindy College Medical Journal
Use of Ascetic Fluid Cholesterol as a Marker to Differentiate between Types of Ascetic Fluid
...Show More Authors

Background:- Cholesterol is high in ascetic fluid due
to malignancy and other causes of exudates.
Objective:-To use cholesterol as a marker to
differentiate between exudative and transudative
ascetic fluid and to compare that with other routine
parameters.
Methods:-Twenty eight patients were included in this
study 17 females with mean age of 41.9 years, 11
males with mean age of 48.2 years. The patients were
divided in group I suspected transudate, and group II
suspected exudate according to history and clinical
examination.
Ascetic fluid samples were sent for total protein,
albumin, and cholesterol measurement blood samples
were sent for serum protein and albumin measurement.
Results:-In this

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
USE OF MODIFIED MAXIMUM LIKELIHOOD METHOD TO ESTIMATE PARAMETERS OF THE MULTIPLE LINEAR REGRESSION MODEL
...Show More Authors

Scopus
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Baysian and NonBaysian Methods to Estimate the two parameters of Logistic Distribution
...Show More Authors

In this paper ,the problem of point estimation for the two parameters of logistic distribution has been investigated using simulation technique. The rank sampling set estimator method which is one of the Non_Baysian procedure and Lindley approximation estimator method which is one of the Baysian method were used to estimate the parameters of logistic distribution. Comparing between these two mentioned methods by employing mean square error measure and mean absolute percentage error measure .At last simulation technique used to generate many number of samples sizes to compare between these methods.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Application the generalized estimating equation Method (GEE) to estimate of conditional logistic regression model for repeated measurements
...Show More Authors

Conditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Robust Estimations of Cluster Analysis: Practical Application in Administrative and Financial Corruption
...Show More Authors

Cluster analysis (clustering) is mainly concerned with dividing a number of data elements into clusters. The paper applies this method to create a gathering of symmetrical government agencies with the aim to classify them and understand how far they are close to each other in terms of administrative and financial corruption by means of five variables representing the prevalent administrative and financial corruption in the state institutions. Cluster analysis has been applied to each of these variables to understand the extent to which these agencies are close to other in each of the cases related to the administrative and financial corruption.           

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed May 11 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Some Methods For A single Imputed A missing Observation In Estimating Nonparametric Regression Function
...Show More Authors

In this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.      

View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Using simulation to estimate parameters and reliability function for extreme value distribution
...Show More Authors

   This study includes Estimating scale parameter, location parameter  and reliability function  for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).

 Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
J. Mech. Cont.& Math. Scis
The Use of Non-Parametric Methods to Estimate Density Functions of Copulas
...Show More Authors

Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Using The Maximum Likelihood And Bayesian Methods To Estimate The Time-Rate Function Of Earthquake Phenomenon
...Show More Authors

In this research, we dealt with the study of the Non-Homogeneous Poisson process, which is one of the most important statistical issues that have a role in scientific development as it is related to accidents that occur in reality, which are modeled according to Poisson’s operations, because the occurrence of this accident is related to time, whether with the change of time or its stability. In our research, this clarifies the Non-Homogeneous hemispheric process and the use of one of these models of processes, which is an exponentiated - Weibull model that contains three parameters (α, β, σ) as a function to estimate the time rate of occurrence of earthquakes in Erbil Governorate, as the governorate is adjacent to two countr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Parameters of General Linear Model in Presence of Heteroscedastic Problem and High Leverage Points
...Show More Authors

Linear regression is one of the most important statistical tools through which it is possible to know the relationship between the response variable and one variable (or more) of the independent variable(s), which is often used in various fields of science. Heteroscedastic is one of the linear regression problems, the effect of which leads to inaccurate conclusions. The problem of heteroscedastic may be accompanied by the presence of extreme outliers in the independent variables (High leverage points) (HLPs), the presence of (HLPs) in the data set result unrealistic estimates and misleading inferences. In this paper, we review some of the robust

... Show More
View Publication Preview PDF
Crossref