This research aims to study the methods of reduction of dimensions that overcome the problem curse of dimensionality when traditional methods fail to provide a good estimation of the parameters So this problem must be dealt with directly . Two methods were used to solve the problem of high dimensional data, The first method is the non-classical method Slice inverse regression ( SIR ) method and the proposed weight standard Sir (WSIR) method and principal components (PCA) which is the general method used in reducing dimensions, (SIR ) and (PCA) is based on the work of linear combinations of a subset of the original explanatory variables, which may suffer from the problem of heterogeneity and the problem of linear multiplicity between most explanatory variables. These new combinations of linear compounds resulting from the two methods will reduce the number of explanatory variables to reach a new dimension one or more which called the effective dimension. The mean root of the error squares will be used to compare the two methods to show the preference of methods and a simulation study was conducted to compare the methods used. Simulation results showed that the proposed weight standard Sir method is the best.
Regression testing is a crucial phase in the software development lifecycle that makes sure that new changes/updates in the software system don’t introduce defects or don’t affect adversely the existing functionalities. However, as the software systems grow in complexity, the number of test cases in regression suite can become large which results into more testing time and resource consumption. In addition, the presence of redundant and faulty test cases may affect the efficiency of the regression testing process. Therefore, this paper presents a new Hybrid Framework to Exclude Similar & Faulty Test Cases in Regression Testing (ETCPM) that utilizes automated code analysis techniques and historical test execution data to
... Show MoreThe main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin
... Show MoreThe corrosion behavior of carbon steel at different temperatures 100,120,140 and 160 Cͦ under different pressures 7,10 and 13 bar in pure distilled water and after adding three types of oxygen scavengers Hydroquinone, Ascorbic acid and Monoethanolamine in different concentrations 40,60 and 80 ppm has been investigated using weight loss method. The carbon steel specimens were immersed in water containing 8.2 ppm dissolved oxygen (DO) by using autoclave. It was found that corrosion behavior of carbon steel was greatly influenced by temperature with high pressure. The corrosion rate decreases, when adding any one of oxygen scavengers. The best results were obtained at a concentration of 80 ppm of each scavenger. It was observed that
... Show MoreVariable selection in Poisson regression with high dimensional data has been widely used in recent years. we proposed in this paper using a penalty function that depends on a function named a penalty. An Atan estimator was compared with Lasso and adaptive lasso. A simulation and application show that an Atan estimator has the advantage in the estimation of coefficient and variables selection.
Tourism plays an important role in Malaysia’s economic development as it can boost business opportunity in its surrounding economic. By apply data mining on tourism data for predicting the area of business opportunity is a good choice. Data mining is the process that takes data as input and produces outputs knowledge. Due to the population of travelling in Asia country has increased in these few years. Many entrepreneurs start their owns business but there are some problems such as wrongly invest in the business fields and bad services quality which affected their business income. The objective of this paper is to use data mining technology to meet the business needs and customer needs of tourism enterprises and find the most effective
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others
... Show MoreIn this research, the one of the most important model and widely used in many and applications is linear mixed model, which widely used to analysis the longitudinal data that characterized by the repeated measures form .where estimating linear mixed model by using two methods (parametric and nonparametric) and used to estimate the conditional mean and marginal mean in linear mixed model ,A comparison between number of models is made to get the best model that will represent the mean wind speed in Iraq.The application is concerned with 8 meteorological stations in Iraq that we selected randomly and then we take a monthly data about wind speed over ten years Then average it over each month in corresponding year, so we g
... Show MoreSemi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.
We compare two methods Bayesian and . Then the results were compared using MSe criteria.
A simulation had been used to study the empirical behavior for the Logistic model , with different sample sizes and variances. The results using represent that the Bayesian method is better than the at small samples sizes.
... Show MoreDrilling fluid loss during drilling operation is undesirable, expensive and potentially hazardous problem.
Nasiriyah oil field is one of the Iraqi oil field that suffer from lost circulation problem. It is known that Dammam, um-Radoma, Tayarat, Shiranish and Hartha are the detecting layers of loss circulation problem. Different type of loss circulation materials (LCMs) ranging from granular, flakes and fibrous were used previously to treat this problem.
This study presents the application of rice as a lost circulation material that used to mitigate and stop the loss problem when partial or total losses occurred.
The experim
... Show MoreThis research is concerned with the re-analysis of optical data (the imaginary part of the dielectric function as a function of photon energy E) of a-Si:H films prepared by Jackson et al. and Ferlauto et al. through using nonlinear regression fitting we estimated the optical energy gap and the deviation from the Tauc model by considering the parameter of energy photon-dependence of the momentum matrix element of the p as a free parameter by assuming that density of states distribution to be a square root function. It is observed for films prepared by Jackson et al. that the value of the parameter p for the photon energy range is is close to the value assumed by the Cody model and the optical gap energy is which is also close to the value
... Show More