This research aims to study the methods of reduction of dimensions that overcome the problem curse of dimensionality when traditional methods fail to provide a good estimation of the parameters So this problem must be dealt with directly . Two methods were used to solve the problem of high dimensional data, The first method is the non-classical method Slice inverse regression ( SIR ) method and the proposed weight standard Sir (WSIR) method and principal components (PCA) which is the general method used in reducing dimensions, (SIR ) and (PCA) is based on the work of linear combinations of a subset of the original explanatory variables, which may suffer from the problem of heterogeneity and the problem of linear multiplicity between most explanatory variables. These new combinations of linear compounds resulting from the two methods will reduce the number of explanatory variables to reach a new dimension one or more which called the effective dimension. The mean root of the error squares will be used to compare the two methods to show the preference of methods and a simulation study was conducted to compare the methods used. Simulation results showed that the proposed weight standard Sir method is the best.
Regression testing is a crucial phase in the software development lifecycle that makes sure that new changes/updates in the software system don’t introduce defects or don’t affect adversely the existing functionalities. However, as the software systems grow in complexity, the number of test cases in regression suite can become large which results into more testing time and resource consumption. In addition, the presence of redundant and faulty test cases may affect the efficiency of the regression testing process. Therefore, this paper presents a new Hybrid Framework to Exclude Similar & Faulty Test Cases in Regression Testing (ETCPM) that utilizes automated code analysis techniques and historical test execution data to
... Show MoreVariable selection in Poisson regression with high dimensional data has been widely used in recent years. we proposed in this paper using a penalty function that depends on a function named a penalty. An Atan estimator was compared with Lasso and adaptive lasso. A simulation and application show that an Atan estimator has the advantage in the estimation of coefficient and variables selection.
In this research, the one of the most important model and widely used in many and applications is linear mixed model, which widely used to analysis the longitudinal data that characterized by the repeated measures form .where estimating linear mixed model by using two methods (parametric and nonparametric) and used to estimate the conditional mean and marginal mean in linear mixed model ,A comparison between number of models is made to get the best model that will represent the mean wind speed in Iraq.The application is concerned with 8 meteorological stations in Iraq that we selected randomly and then we take a monthly data about wind speed over ten years Then average it over each month in corresponding year, so we g
... Show MoreDrilling fluid loss during drilling operation is undesirable, expensive and potentially hazardous problem.
Nasiriyah oil field is one of the Iraqi oil field that suffer from lost circulation problem. It is known that Dammam, um-Radoma, Tayarat, Shiranish and Hartha are the detecting layers of loss circulation problem. Different type of loss circulation materials (LCMs) ranging from granular, flakes and fibrous were used previously to treat this problem.
This study presents the application of rice as a lost circulation material that used to mitigate and stop the loss problem when partial or total losses occurred.
The experim
... Show MoreSemi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.
We compare two methods Bayesian and . Then the results were compared using MSe criteria.
A simulation had been used to study the empirical behavior for the Logistic model , with different sample sizes and variances. The results using represent that the Bayesian method is better than the at small samples sizes.
... Show MoreAbstract
The aim of this work is to create a power control system for wind turbines based on fuzzy logic. Three power control loop was considered including: changing the pitch angle of the blade, changing the length of the blade and turning the nacelle. The stochastic law was given for changes and instant inaccurate assessment of wind conditions changes. Two different algorithms were used for fuzzy inference in the control loop, the Mamdani and Larsen algorithms. These two different algorithms are materialized and developed in this study in Matlab-Fuzzy logic toolbox which has been practically implemented using necessary intelligent control system in electrical engineerin
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others
... Show MoreAbstract
Sovereign wealth funds are an important tool for achieving economic stability and avoiding the local economy from external shocks, including the shocks of international oil prices. The spread of these funds is the result of large current account surpluses in many Asian and oil-exporting economies. These surpluses are due to higher commodity prices Has led to a rapid accumulation of foreign assets in central banks. Many countries with rent economies face the problem of their dependence on non-renewable natural resources, especially the oil countries, including Iraq. Oil revenues are more than 97% of oil exports, so they suffer from structural imbal
... Show MoreThis research is concerned with the re-analysis of optical data (the imaginary part of the dielectric function as a function of photon energy E) of a-Si:H films prepared by Jackson et al. and Ferlauto et al. through using nonlinear regression fitting we estimated the optical energy gap and the deviation from the Tauc model by considering the parameter of energy photon-dependence of the momentum matrix element of the p as a free parameter by assuming that density of states distribution to be a square root function. It is observed for films prepared by Jackson et al. that the value of the parameter p for the photon energy range is is close to the value assumed by the Cody model and the optical gap energy is which is also close to the value
... Show MoreThe use of data envelopment analysis method helps to improve the performance of organizations in order to exploit their resources efficiently in order to improve the service quality. represented study a problem in need of the Iraqi Middle East Investment Bank to assess the performance of bank branches, according to the service quality provided, Thus, the importance of the study is to contribute using a scientific and systematic method by applying the data envelopment analysis method in assessing the service quality provided by the bank branches, The study focused on achieving the goal of determining the efficiency of the services quality provided by the bank branches manner which reflect the extent of utilization of a
... Show More