In this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).
Background: Insulin resistance (IR) is an important clinical and biochemical determinant of diabetes and many other clinical states. The gold standard method for IR estimation is the hyperinsulinemic euglycaemic glucose clamp. Adiponectin and resistin are adipocytes derived hormones that play important role in the regulation of glucose, fat metabolism and insulin resistance.
Objective: this study aimed to assess the validity of Homestasis Model Assessment–Adiponectin ratio and Adiponectin –Resistin index as markers of insulin resistance in type 2 diabetic mellitus (T2DM) patients.
Design: Ninety (T2DM) overweight male subjects were enrolled in this cross sectional study, detailed history, physical examination and anthropometric
Background: The association of celiac disease and type 1 diabetes mellitus is known worldwide due to shared auto immunological background, since celiac disease could present in diabetic patients with non specific symptoms or asymptomatically, periodic serological screening is necessary for early diagnosis.
Objectives: To estimate the prevalence of celiac disease in children with type 1 diabetes.
Patients and methods: A total of 152 children with type 1 diabetes attending the Children Welfare Teaching Hospital; 67 boys, 85 girls with mean age of 10.3 year± 3.7 and mean duration of diabetes 3.5years ±2.5, from May 2010 -May 2011 were screened for celiac disease using immunoglobulin A and G tissue trans
This deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values
In this study, we investigate the behavior of the estimated spectral density function of stationary time series in the case of missing values, which are generated by the second order Autoregressive (AR (2)) model, when the error term for the AR(2) model has many of continuous distributions. The Classical and Lomb periodograms used to study the behavior of the estimated spectral density function by using the simulation.
In this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.
In this paper, a Monte Carlo Simulation technique is used to compare the performance of the standard Bayes estimators of the reliability function of the one parameter exponential distribution .Three types of loss functions are adopted, namely, squared error loss function (SELF) ,Precautionary error loss function (PELF) andlinear exponential error loss function(LINEX) with informative and non- informative prior .The criterion integrated mean square error (IMSE) is employed to assess the performance of such estimators
The Estimation Of The Reliability Function Depends On The Accuracy Of The Data Used To Estimate The Parameters Of The Probability distribution, and Because Some Data Suffer from a Skew in their Data to Estimate the Parameters and Calculate the Reliability Function in light of the Presence of Some Skew in the Data, there must be a Distribution that has flexibility in dealing with that Data. As in the data of Diyala Company for Electrical Industries, as it was observed that there was a positive twisting in the data collected from the Power and Machinery Department, which required distribution that deals with those data and searches for methods that accommodate this problem and lead to accurate estimates of the reliability function,
... Show MoreThe question of estimation took a great interest in some engineering, statistical applications, various applied, human sciences, the methods provided by it helped to identify and accurately the many random processes.
In this paper, methods were used through which the reliability function, risk function, and estimation of the distribution parameters were used, and the methods are (Moment Method, Maximum Likelihood Method), where an experimental study was conducted using a simulation method for the purpose of comparing the methods to show which of these methods are competent in practical application This is based on the observations generated from the Rayleigh logarithmic distribution (RL) with sample sizes
... Show MoreThe co-occurrence of metabolic syndrome with type 2 diabetes mellitus (T2DM) will potentiate the morbidity and mortality that may be associated with each case. Fasting triglycerides-glucose index (TyG index) has been recommended as a useful marker to predict metabolic syndrome. Our study aimed to introduce gender-specific cut-off values of triglycerides- glucose index for diagnosing metabolic syndrome associated with type 2 diabetes mellitus. The data were collected from Baghdad hospitals between May - December 2019. The number of eligible participants was 424. National cholesterol education program, Adult Treatment Panel III criteria were used to define metabolic syndrome. Measurement of fasting blood glucose, lipid pro
... Show MoreIn this paper, some estimators for the reliability function R(t) of Basic Gompertz (BG) distribution have been obtained, such as Maximum likelihood estimator, and Bayesian estimators under General Entropy loss function by assuming non-informative prior by using Jefferys prior and informative prior represented by Gamma and inverted Levy priors. Monte-Carlo simulation is conducted to compare the performance of all estimates of the R(t), based on integrated mean squared.