Preferred Language
Articles
/
jeasiq-134
Bayes Estimators for the Parameter of the Inverted Exponential Distribution Under different Double informative priors

In this paper, we present a comparison of double informative priors which are assumed for the parameter of inverted exponential distribution.To estimate the parameter of inverted exponential distribution by using Bayes estimation ,will be  used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of inverted exponential distribution. Also assumed Chi-squared - Gamma distribution, Chi-squared - Erlang distribution, and- Gamma- Erlang distribution as double priors. The results are the derivations of these estimators under the squared error loss function with three different double priors.

Additionally Maximum likelihood estimation method (MLE) was used  to estimate the parameter of inverted exponential distribution .We used simulation technique, to compare the performance for each estimator, several cases from inverted exponential distribution for data generating, for different samples sizes (small, medium, and large).Simulation results shown that the best method is the bayes  estimation according to the smallest values of mean square errors( MSE) for all samples sizes (n) comparative to the estimated values by using MLE . According to obtained results, we see that when the double prior distribution for  is Gamma- Erlang distribution for some values for the parameters a, b & given the best results according to the smallest values of mean square errors (MSE) comparative to the same values which obtained by using Maximum likelihood estimation (MLE) for the assuming true values for and for all samples sizes.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Comparison Between the MLE and Standard Bayes Estimators of the Reliability Function of Exponential Distribution

     In this paper, a Monte Carlo Simulation technique is used to compare the performance of MLE and the standard Bayes estimators of the reliability function of the one parameter exponential distribution.Two types of loss functions are adopted, namely, squared error  loss function (SELF) and modified square error loss function (MSELF) with informative and non- informative prior. The criterion integrated mean square error (IMSE) is employed to assess the performance of such estimators .

Crossref
View Publication Preview PDF
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Efficient Single Stage Shrinkage Estimator for the Scale parameter of Inverted Gamma Distribution

 The present  paper agrees  with estimation of scale parameter θ of the Inverted Gamma (IG) Distribution when the shape parameter α is known (α=1), bypreliminarytestsinglestage shrinkage estimators using  suitable  shrinkage weight factor and region.  The expressions for the Bias, Mean Squared Error [MSE] for the proposed estimators are derived. Comparisons between the considered estimator with the usual estimator (MLE) and with the existing estimator  are performed .The results are presented in attached tables.

Crossref
View Publication Preview PDF
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using Entropy and Linear Exponential Loos Function Estimators the Parameter and Reliability Function of Inverse Rayleigh Distribution

     This paper is devoted to compare the performance of non-Bayesian estimators represented by the Maximum likelihood estimator of the scale parameter and reliability function of inverse Rayleigh distribution with Bayesian estimators obtained under two types of loss function specifically; the linear, exponential (LINEX) loss function and Entropy loss function, taking into consideration the informative and non-informative priors. The  performance of such estimators assessed on the basis of mean square error (MSE) criterion. The Monte Carlo simulation experiments are conducted in order to obtain the required results. 

 

Crossref
View Publication Preview PDF
Publication Date
Tue Apr 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Evaluation Age and Gender for General Census of the population in Iraq by using nonparametric Bayesian Kernel Estimators

The process of evaluating data (age and the gender structure) is one of the important factors that help any country to draw plans and programs for the future. Discussed the errors in population data for the census of Iraqi population of 1997. targeted correct and revised to serve the purposes of planning. which will be smoothing the population databy using nonparametric regression estimator (Nadaraya-Watson estimator) This estimator depends on bandwidth (h) which can be calculate it by two ways of using Bayesian method, the first when observations distribution is Lognormal Kernel and the second is when observations distribution is Normal Kernel

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
A Comparative Study on the Double Prior for Reliability Kumaraswamy Distribution with Numerical Solution

This work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The

... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Scopus Crossref
View Publication
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Inference for Generalized Inverted Exponential Distribution UnderProgressive Type-I Interval Censored Data

This article discusses the estimation methods for parameters of a generalized inverted exponential distribution with different estimation methods by using Progressive type-I interval censored data. In addition to conventional maximum likelihood estimation, the mid-point method, probability plot method and method of moments are suggested for parameter estimation. To get maximum likelihood estimates, we utilize the Newton-Raphson, expectation -maximization and stochastic expectation-maximization methods. Furthermore, the approximate confidence intervals for the parameters are obtained via the inverse of the observed information matrix. The Monte Carlo simulations are used to introduce numerical comparisons of the proposed estimators. In ad

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Bayesian and Non - Bayesian Inference for Shape Parameter and Reliability Function of Basic Gompertz Distribution

In this paper, some estimators of the unknown shape parameter and reliability function  of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively

Scopus (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
Discussing Fuzzy Reliability Estimators of Function of Mixed Probability Distribution By Simulation

This paper deals  with constructing mixed probability distribution  from exponential with scale parameter (β) and also Gamma distribution with (2,β), and the mixed proportions are (  .first of all, the probability density function (p.d.f) and also cumulative distribution function (c.d.f) and also the reliability function are obtained. The parameters of mixed distribution, ( ,β)  are estimated by three different methods, which are  maximum likelihood, and  Moments method,as well proposed method (Differential Least Square Method)(DLSM).The comparison is done using simulation procedure, and all the results are explained in tables.

Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Comparison Between the Bayes Estimator and the Maximum Likelihood Estimator of the Reliability Function for Negative Exponential Distribution

     In this paper, the maximum likelihood estimator and the Bayes estimator of the reliability function for negative exponential distribution has been derived, then a Monte –Carlo simulation technique was employed to compare the performance of such estimators. The integral mean square error (IMSE) was used as a criterion for this comparison. The simulation results displayed that the Bayes estimator performed better than the maximum likelihood estimator for different samples sizes.

Crossref
View Publication Preview PDF