In the recent years, remote sensing applications have a great interest because it's offers many advantages, benefits and possibilities for the applications that using this concept, satellite it's one must important applications for remote sensing, it's provide us with multispectral images allow as study many problems like changing in ecological cover or biodiversity for earth surfers, and illustrated biological diversity of the studied areas by the presentation of the different areas of the scene taken depending on the length of the characteristic wave, Thresholding it's a common used operation for image segmentation, it's seek to extract a monochrome image from gray image by segment this image to two region (foreground & background) depending on pixels intensity to reducing image distortion, and also separated the target area from the rest of scene features under study, so we seek to used number of thresholding techniques in this paper for clarify the importance of this concept in image processing and we proposed a new statistical thresholding techniques which compared with techniques used, and the result showed the advantage of proposed techniques that achieved from applying the techniques on multispectral satellite image takin for an area west of Iraq that characterized their environmental diversity so it's a good case to study.
Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
In this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreOne of the most Interesting natural phenomena is clouds that have a very strong effect on the climate, weather and the earth's energy balance. Also clouds consider the key regulator for the average temperature of the plant. In this research monitoring and studying the cloud cover to know the clouds types and whether they are rainy or not rainy using visible and infrared satellite images. In order to interpret and know the types of the clouds visually without using any techniques, by comparing between the brightness and the shape of clouds in the same area for both the visible and infrared satellite images, where the differences in the contrasts of visible image are the albedo differences, while in the infrared images is the temperature d
... Show More|
The problem of research on the study of political debate programs in the Iraqi satellite channels, in the "People decide" program by Afaq channel and " electoral competition " by Fallujah channel), and its importance for the community and researchers in the scientific field, as new programs to enter the Iraqi media after we have been the world media a lot in this area at the academic and practical levels (The field), and seeks to find out what the technical construction of the programs of political debates in Iraqi satellite channels and methods of construction and methods of employment used by the technical elements in the presentation of the programs and The study adopted the surve |
Abstract:
In this study a type of polymeric composites from melting poly propylene as a basic substance with Palm fronds powder were prepared. Evaluation of polymeric composites was done by studying some of it is mechanical properties, which included:Yong modulus (E), Impact Strength (I.S), Brinell hardness (B.H) and Compression Strength (C.S). The polymeric composites were studied before and after reinforcment by comparing between them. There was an increase in resistance of Yong modulus (E), Impact Strength (I.S), Brinell hardness (B.H) and compression Strength (C.S). Also, the effect of some acids were studied such as (HCl, H2
The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w
... Show MoreThis research aims at identifying the commitment of satellite news channels in Arabic to the set of important standards that reflect their credibility in dealing with the media material, and considering that these channels give special importance to events in Iraq, as well as the Arab region and the world, decide to choose them and study them with a problem The research was a question about the level of credibility of Iraqi media. This research is descriptive research, which used the survey method on an objective sample of 245 items, while the questionnaire was used as a data collection tool. Seven channels were selected in Arabic for the study. The three most watched channels were chosen. These channels included the channels of Russia t
... Show More