Preferred Language
Articles
/
jeasiq-1344
Comparison of Multistage and Numerical Discretization Methods for Estimating Parameters in Nonlinear Linear Ordinary Differential Equations Models.
...Show More Authors

Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the remaining constant parameters and time-varying parameters are estimated by using a semi-parametric regression model and then comparing this method with methods based on numerical discretization methods, which includes two stages. In the first stage we estimate the state variables and their derivatives by (p spline) , In the second stage we use Methods of numerical discretization methods (the Euler discretization method  and the trapezoidal discretization method), where the comparison was done using simulations and showed the results superior to the trapezoidal method of numerical differentiation where it gave the best estimations to balance between accuracy in estimation And high arithmetic cost.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Heun Method Using to Solve System of NonLinear Functional Differential Equations
...Show More Authors

In this paper Heun method has been used to find numerical solution for first order nonlinear functional differential equation. Moreover, this method has been modified in order to treat system of nonlinear functional differential equations .two numerical examples are given for conciliated the results of this method.

View Publication Preview PDF
Crossref
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Partial Least Squares and Principal Components Methods by Simulation
...Show More Authors

Abstract                                                                                              

The methods of the Principal Components and Partial Least Squares can be regard very important methods  in the regression analysis, whe

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Comparing the Sequential Nonlinear least squared Method and Sequential robust M method to estimate the parameters of Two Dimensional sinusoidal signal model:
...Show More Authors

Estimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust  M method after their development through the use of sequential  approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Some Robust methods for Estimates the power Spectrum in ARMA Models Simulation Study
...Show More Authors

Abstract:

Robust statistics Known as, resistance to errors caused by deviation from the stability hypotheses of the statistical operations (Reasonable, Approximately Met, Asymptotically Unbiased, Reasonably Small Bias, Efficient ) in the data selected in a wide range of probability distributions whether they follow a normal distribution or a mixture of other distributions deviations different standard .

power spectrum function lead to, President role in the analysis of Stationary random processes, form stable random variables organized according to time, may be discrete random variables or continuous. It can be described by measuring its total capacity as function in frequency.

<

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method
...Show More Authors

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Thu Oct 15 2015
Journal Name
Al Mustansyriah Journal Of Science
Comparison between (ARIMA) and (ANNs) models for estimating the relative humidity for Baghdad city
...Show More Authors

The aim of the research is to study the comparison between (ARIMA) Auto Regressive Integrated Moving Average and(ANNs) Artificial Neural Networks models and to select the best one for prediction the monthly relative humidity values depending upon the standard errors between estimated and observe values . It has been noted that both can be used for estimation and the best on among is (ANNs) as the values (MAE,RMSE, R2) is )0.036816,0.0466,0.91) respectively for the best formula for model (ARIMA) (6,0,2)(6,0,1) whereas the values of estimates relative to model (ANNs) for the best formula (5,5,1) is (0.0109, 0.0139 ,0.991) respectively. so that model (ANNs) is superior than (ARIMA) in a such evaluation.

Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of weighted estimated method and proposed method (BEMW) for estimation of semi-parametric model under incomplete data
...Show More Authors

Generally, statistical methods are used in various fields of science, especially in the research field, in which Statistical analysis is carried out by adopting several techniques, according to the nature of the study and its objectives. One of these techniques is building statistical models, which is done through regression models. This technique is considered one of the most important statistical methods for studying the relationship between a dependent variable, also called (the response variable) and the other variables, called covariate variables. This research describes the estimation of the partial linear regression model, as well as the estimation of the “missing at random” values (MAR). Regarding the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison for estimation methods for the autoregressive approximations
...Show More Authors

Abstract

      In this study, we compare between the autoregressive approximations (Yule-Walker equations, Least Squares , Least Squares ( forward- backword ) and Burg’s (Geometric and Harmonic ) methods, to determine the optimal approximation to the time series generated from the first - order moving Average non-invertible process, and fractionally - integrated noise process, with several values for d (d=0.15,0.25,0.35,0.45) for different sample sizes (small,median,large)for two processes . We depend on figure of merit function which proposed by author Shibata in 1980, to determine the theoretical optimal order according to min

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Aug 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between the Local Polynomial Kernel and Penalized Spline to Estimating Varying Coefficient Model
...Show More Authors

Analysis the economic and financial phenomena and other requires to build the appropriate model, which represents the causal relations between factors. The operation building of the model depends on Imaging conditions and factors surrounding an in mathematical formula and the Researchers target to build that formula appropriately. Classical linear regression models are an important statistical tool, but used in a limited way, where is assumed that the relationship between the variables illustrations and response variables identifiable. To expand the representation of relationships between variables that represent the phenomenon under discussion we used Varying Coefficient Models

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Parameters Estimation Methods for the Negative Binomial Regression Model under Multicollinearity Problem by Using Simulation
...Show More Authors

This study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators

... Show More
View Publication Preview PDF
Crossref