In this study, we review the ARIMA (p, d, q), the EWMA and the DLM (dynamic linear moodelling) procedures in brief in order to accomdate the ac(autocorrelation) structure of data .We consider the recursive estimation and prediction algorithms based on Bayes and KF (Kalman filtering) techniques for correlated observations.We investigate the effect on the MSE of these procedures and compare them using generated data.
study aimed to investigate the effect of fish bone in the of chemistry and self-organized learning for students of the second grade‚ achievement . The study sample consisted of 84 students from the second grade students middel in the of alrasheed boysschool, of the Directorate of Educational Karkh II, in two divisions, Division of (a) an experimental group that studied the strategy fish bone, and the Division (d) a control group which studied the usual way. The results indicated the presence of significant differences in favor of the experimental group that studied using the fish bone in achievement and learning self-organized strategy students
In this paper the research represents an attempt of expansion in using the parametric and non-parametric estimators to estimate the median effective dose ( ED50 ) in the quintal bioassay and comparing between these methods . We have Chosen three estimators for Comparison. The first estimator is
( Spearman-Karber ) and the second estimator is ( Moving Average ) and The Third estimator is ( Extreme Effective Dose ) . We used a minimize Chi-square as a parametric method. We made a Comparison for these estimators by calculating the mean square error of (ED50) for each one of them and comparing it with the optimal the mean square
Abstract
The methods of the Principal Components and Partial Least Squares can be regard very important methods in the regression analysis, whe
... Show MoreClassifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreWireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregati
... Show MoreObjective (s): To determine factors associated with the pregnancy complications (Maternal age, education,
obstetrical history, gravidity, birth space interval, and smoking).
Methodology: A cross-sectional study conducted at Al- washash & Bab-almoadham primary health care
centers. The sample was (non probability convenient sample) which included (550) pregnant women. The
study started from 1st April 2014 to 1
st of April 2015. The data was collected by direct interview using
special questionnaire to obtain socio-demographic information.
Results: the result shows that mean age of the subjects was 26.5± 4.39 years, 57.8% were housewives, the
sample included 103 premature uterine contractions, 98 pregnancy induce
The research dealt with a comparative study between some semi-parametric estimation methods to the Partial linear Single Index Model using simulation. There are two approaches to model estimation two-stage procedure and MADE to estimate this model. Simulations were used to study the finite sample performance of estimating methods based on different Single Index models, error variances, and different sample sizes , and the mean average squared errors were used as a comparison criterion between the methods were used. The results showed a preference for the two-stage procedure depending on all the cases that were used
Exponential distribution is one of most common distributions in studies and scientific researches with wide application in the fields of reliability, engineering and in analyzing survival function therefore the researcher has carried on extended studies in the characteristics of this distribution.
In this research, estimation of survival function for truncated exponential distribution in the maximum likelihood methods and Bayes first and second method, least square method and Jackknife dependent in the first place on the maximum likelihood method, then on Bayes first method then comparing then using simulation, thus to accomplish this task, different size samples have been adopted by the searcher us
... Show MoreThe art of synthesis is one of the most important pillars in cinematic art, as the director combines cinematic shots to produce a third shot in the mind of the recipient by various methods such as mental synthesis, analogous synthesis, rhythm synthesis, parallel synthesis and repetitive synthesis, Repetitive synthesis is one of the most important techniques in cinematic montage. Through repetitive synthesis, the director is able to link the shots and scenes with each other, and this is what we see in the poetic imagery of Adnan Al-Sayegh when he links the visual images to each other, especially those images that manifest the manifestations of grief and misery following the misfortunes that befell in His homeland. This study follows the d
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the
... Show More