In this study, we review the ARIMA (p, d, q), the EWMA and the DLM (dynamic linear moodelling) procedures in brief in order to accomdate the ac(autocorrelation) structure of data .We consider the recursive estimation and prediction algorithms based on Bayes and KF (Kalman filtering) techniques for correlated observations.We investigate the effect on the MSE of these procedures and compare them using generated data.
Precise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables
... Show MoreIn recent years, the Global Navigation Satellite Services (GNSS) technology has been frequently employed for monitoring the Earth crust deformation and movement. Such applications necessitate high positional accuracy that can be achieved through processing GPS/GNSS data with scientific software such as BERENSE, GAMIT, and GIPSY-OSIS. Nevertheless, these scientific softwares are sophisticated and have not been published as free open source software. Therefore, this study has been conducted to evaluate an alternative solution, GNSS online processing services, which may obtain this privilege freely. In this study, eight years of GNSS raw data for TEHN station, which located in Iran, have been downloaded from UNAVCO website
... Show MoreThe development in manufacturing computers from both (Hardware and Software) sides, make complicated robust estimators became computable and gave us new way of dealing with the data, when classical discriminant methods failed in achieving its optimal properties especially when data contains a percentage of outliers. Thus, the inability to have the minimum probability of misclassification. The research aim to compare robust estimators which are resistant to outlier influence like robust H estimator, robust S estimator and robust MCD estimator, also robustify misclassification probability with showing outlier influence on the percentage of misclassification when using classical methods. ,the other
... Show MoreA fast moving infrared excess source (G2) which is widely interpreted as a core-less gas and dust cloud approaches Sagittarius A* (Sgr A*) on a presumably elliptical orbit. VLT
This research sought to present a concept of cross-sectional data models, A crucial double data to take the impact of the change in time and obtained from the measured phenomenon of repeated observations in different time periods, Where the models of the panel data were defined by different types of fixed , random and mixed, and Comparing them by studying and analyzing the mathematical relationship between the influence of time with a set of basic variables Which are the main axes on which the research is based and is represented by the monthly revenue of the working individual and the profits it generates, which represents the variable response And its relationship to a set of explanatory variables represented by the
... Show MoreThe investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show MoreWith the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch
The idea of carrying out research on incomplete data came from the circumstances of our dear country and the horrors of war, which resulted in the missing of many important data and in all aspects of economic, natural, health, scientific life, etc.,. The reasons for the missing are different, including what is outside the will of the concerned or be the will of the concerned, which is planned for that because of the cost or risk or because of the lack of possibilities for inspection. The missing data in this study were processed using Principal Component Analysis and self-organizing map methods using simulation. The variables of child health and variables affecting children's health were taken into account: breastfeed
... Show MoreBackground: Generally, genetic disorders are a leading cause of spontaneous abortion, neonatal death, increased morbidity and mortality in children and adults as well. They a significant health care and psychosocial burden for the patient, the family, the healthcare system and the community as a whole. Chromosomal abnormalities occur much more frequently than is generally appreciated. It is estimated that approximately 1 of 200 newborn infants had some form of chromosomal abnormality. The figure is much higher in fetuses that do not survive to term. It is estimated that in 50% of first trimester abortions, the fetus has a chromosomal abnormality. Aim of the study: This study aims to shed some light on the results of chromosomal studies per
... Show More