The purpose behind building the linear regression model is to describe the real linear relation between any explanatory variable in the model and the dependent one, on the basis of the fact that the dependent variable is a linear function of the explanatory variables and one can use it for prediction and control. This purpose does not cometrue without getting significant, stable and reasonable estimatros for the parameters of the model, specifically regression-coefficients. The researcher found that "RUF" the criterian that he had suggested accurate and sufficient to accomplish that purpose when multicollinearity exists provided that the adequate model that satisfies the standard assumpitions of the error-term can be assigned. It is wrong to ignore the assumptions and depend directly on the least "MSE & PRESS" and greatest " " because it satisfies the model with false fit to data, whereas the regession coefficients are still unstable and unreasonable because of the multicollinearity and the effect of the error-term on the explanatory and predicted power. So the researcher has made procedures for using his criterion "RUF" to get the real best subset linear model.
The banking sector has a significant impact on the economic growth of the country, and the importance of this sector must assess its financial performance from time to time, to measure the situation related to money for each bank and how to put the supervision of the efficiency of the full. The research aims at evaluating the financial performance according to the elements of the CAMELS model, which including capital adequacy, asset quality, management efficiency, profitability, liquidity and market risk sensitivity. The research included the study of Al-Mansour Investment Bank during the period from 2014 to 2018. The base capital ratio was used to total assets to measure capital adequacy The proportion of investments to total assets to mea
... Show MoreThe study deals with the issue of multi-choice linear mathematical programming. The right side of the constraints will be multi-choice. However, the issue of multi-purpose mathematical programming can not be solved directly through linear or nonlinear techniques. The idea is to transform this matter into a normal linear problem and solve it In this research, a simple technique is introduced that enables us to deal with this issue as regular linear programming. The idea is to introduce a number of binary variables And its use to create a linear combination gives one parameter was used multiple. As well as the options of linear programming model to maximize profits to the General Company for Plastic Industries product irrigation sy
... Show MoreResearchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat
... Show MoreThis study aims to determine the extent to which Palestinian elites use digital diplomacy to confront the Israeli narrative by exploring the motives for usage, patterns, essential digital diplomatic tools, and achieved satisfactions. The study adopted a survey methodology and employed a questionnaire distributed to a sample of 110 Palestinian political and media elites.
The study arrived at several key findings, including: Palestinian elites allocate a substantial (%67) of their efforts towards employing digital diplomacy as a response to the Israeli narrative. The foremost platforms employed for this purpose are Facebook and Twitter. The primary motivation for utilizing these digital platforms is to present
Abstract
This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model
... Show MoreIn this paper, Response Surface Method (RSM) is utilized to carry out an investigation of the impact of input parameters: electrode type (E.T.) [Gr, Cu and CuW], pulse duration of current (Ip), pulse duration on time (Ton), and pulse duration off time (Toff) on the surface finish in EDM operation. To approximate and concentrate the suggested second- order regression model is generally accepted for Surface Roughness Ra, a Central Composite Design (CCD) is utilized for evaluating the model constant coefficients of the input parameters on Surface Roughness (Ra). Examinations were performed on AISI D2 tool steel. The important coefficients are gotten by achieving successfully an Analysis of V
... Show More
Regression testing is a crucial phase in the software development lifecycle that makes sure that new changes/updates in the software system don’t introduce defects or don’t affect adversely the existing functionalities. However, as the software systems grow in complexity, the number of test cases in regression suite can become large which results into more testing time and resource consumption. In addition, the presence of redundant and faulty test cases may affect the efficiency of the regression testing process. Therefore, this paper presents a new Hybrid Framework to Exclude Similar & Faulty Test Cases in Regression Testing (ETCPM) that utilizes automated code analysis techniques and historical test execution data to
... Show MoreOver the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame