The purpose behind building the linear regression model is to describe the real linear relation between any explanatory variable in the model and the dependent one, on the basis of the fact that the dependent variable is a linear function of the explanatory variables and one can use it for prediction and control. This purpose does not cometrue without getting significant, stable and reasonable estimatros for the parameters of the model, specifically regression-coefficients. The researcher found that "RUF" the criterian that he had suggested accurate and sufficient to accomplish that purpose when multicollinearity exists provided that the adequate model that satisfies the standard assumpitions of the error-term can be assigned. It is wrong to ignore the assumptions and depend directly on the least "MSE & PRESS" and greatest " " because it satisfies the model with false fit to data, whereas the regession coefficients are still unstable and unreasonable because of the multicollinearity and the effect of the error-term on the explanatory and predicted power. So the researcher has made procedures for using his criterion "RUF" to get the real best subset linear model.
The aim of this study was to determine the effect on using the McCarthy Model (4MAT) for developing creative writing skills and reflective thinking among undergraduate students. The quasi-experimental approach was adopted. And, in order to achieve the study objective, the educational content of Teaching Ethics (Approach 401), for the plan for the primary grades teacher preparation program was dealt with by using a teaching program based on the McCarthy Model (4MAT) was used.
The study which was done had been based on the academic achievement test for creative writing skills, and the reflective thinking test. The validity and reliability of the study tools were also confirmed. The study was applied to a sample consisting of
... Show MoreThe main objective of this study is to measure the Impact of global financial crisis on some indicators of the Saudi Arabia's economy using the Mendel-Fleming model, the importance of the study applied by focusing on the theme of general equilibrium in the face of fluctuations in the global economy. Study used a descriptive approach and the methodology of econometrics to construct the model. Study used Eviews Program for data analysis. The Data was collected from the Saudi Arabian Monetary Agency, for the period (1997-2014).Stationery of the variables was checked by Augmented Dickey-Fuller (ADF) and Phillips Perron (PP) unit roots tests. And also the co-integration
... Show MoreThe issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the p
... Show MoreThe issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator
... Show MoreIn this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .
Circular data (circular sightings) are periodic data and are measured on the unit's circle by radian or grades. They are fundamentally different from those linear data compatible with the mathematical representation of the usual linear regression model due to their cyclical nature. Circular data originate in a wide variety of fields of scientific, medical, economic and social life. One of the most important statistical methods that represents this data, and there are several methods of estimating angular regression, including teachers and non-educationalists, so the letter included the use of three models of angular regression, two of which are teaching models and one of which is a model of educators. ) (DM) (MLE) and circular shrinkage mod
... Show MoreIn this paper, a mathematical model was built for the supply chain to reduce production, inventory, and transportation in Baghdad Company for Soft Drink. The linear programming method was used to solve this mathematical model. We reduced the cost of production by reduced the daily work hours, the company do not need the overtime hours to work at the same levels of production, and the costs of storage in the company's warehouses and agents' stores have been reduced by making use of the stock correctly, which guarantees reducing costs and preserving products from damage. The units transferred from the company were equal to the units demanded by the agents. The company's mathematical model also achieved profits by (84,663,769) by re
... Show MoreIn order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.