Preferred Language
Articles
/
jeasiq-1069
Comparison Robust M Estimate With Cubic Smoothing Splines For Time-Varying Coefficient Model For Balance Longitudinal Data
...Show More Authors

In this research، a comparison has been made between the robust estimators of (M) for the Cubic Smoothing Splines technique، to avoid the problem of abnormality in data or contamination of error، and the traditional estimation method of Cubic Smoothing Splines technique by using two criteria of differentiation which are (MADE، WASE) for different sample sizes and disparity levels to estimate the chronologically different coefficients functions for the balanced longitudinal data which are characterized by observations obtained through (n) from the independent subjects، each one of them is measured repeatedly by group of  specific time points (m)،since the frequent measurements within the subjects are almost connected and independent among the different subjects

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 02 2025
Journal Name
Current Studies On Probability And Statistics
SAR-HDP: Non-parametric Topic Model for Aspect categorisation based on online reviews
...Show More Authors

Aspect categorisation and its utmost importance in the eld of Aspectbased Sentiment Analysis (ABSA) has encouraged researchers to improve topic model performance for modelling the aspects into categories. In general, a majority of its current methods implement parametric models requiring a pre-determined number of topics beforehand. However, this is not e ciently undertaken with unannotated text data as they lack any class label. Therefore, the current work presented a novel non-parametric model drawing a number of topics based on the semantic association present between opinion-targets (i.e., aspects) and their respective expressed sentiments. The model incorporated the Semantic Association Rules (SAR) into the Hierarchical Dirichlet Proce

... Show More
View Publication
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Power System Stabilizer PSS4B Model for Iraqi National Grid using PSS/E Software
...Show More Authors

To damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. Double input multiband Power system stabilizers (PSSs) were used to damp out low-frequency oscillations in power system. Among dual-input PSSs, PSS4B offers superior transient performance. Power system simulator for engineering (PSS/E) software was adopted to test and evaluate the dynamic performance of PSS4B model on Iraqi national grid. The res

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sat Jul 05 2025
Journal Name
Journal Of Machine And Computing
Cyber Neutrosophic Model for Secure and Uncertainty Aware Evaluation in Indoor Design Projects
...Show More Authors

To perform a secure evaluation of Indoor Design data, the research introduces a Cyber-Neutrosophic Model, which utilizes AES-256 encryption, Role-Based Access Control, and real-time anomaly detection. It measures the percentage of unpredictability, insecurity, and variance present within model features. Also, it provides reliable data security. Similar features have been identified between the final results of the study, corresponding to the Cyber-Neutrosophic Model analysis, and the cybersecurity layer helped mitigate attacks. It is worth noting that Anomaly Detection successfully achieved response times of less than 2.5 seconds, demonstrating that the model can maintain its integrity while providing privacy. Using neutrosophic sim

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Dec 31 2006
Journal Name
Journal Of Engineering
Theoretical Simulation Of Stress-Strain Relations For Some Iraqiclays Using The Endochronic Model
...Show More Authors

Publication Date
Sun Feb 03 2019
Journal Name
Journal Of The College Of Education For Women
Listening Comprehension Problems with English lectures
...Show More Authors

The purpose of this study is to investigate learners' listening comprehension problems with Englishlectures. The study was guided by research question (What are the listening comprehension problems learners have with lectures in English).Furthermore; the main significant goal were declared through conducting this study, as well as providing some procedures of distribution the questionnaire of the study.Moreover, it presents several definitions of listening. This study definitely depends on questionnaire instrument to gathering the required data. The participants of the study were 30 learners completed their secondary school and joined at the college. Based on the findings among the five factors (text, speaker, task, environment, and list

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 03 2023
Journal Name
College Of Islamic Sciences
Ruling on selling big data (Authentical Fiqh Study): Ruling on selling big data (Authentical Fiqh Study)
...Show More Authors

Abstract:

Research Topic: Ruling on the sale of big data

Its objectives: a statement of what it is, importance, source and governance.

The methodology of the curriculum is inductive, comparative and critical

One of the most important results: it is not permissible to attack it and it is a valuable money, and it is permissible to sell big data as long as it does not contain data to users who are not satisfied with selling it

 Recommendation: Follow-up of studies dealing with the provisions of the issue

Subject Terms

Judgment, Sale, Data, Mega, Sayings, Jurists

 

View Publication Preview PDF
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Estimate Kernel Ridge Regression Function in Multiple Regression
...Show More Authors

             In general, researchers and statisticians in particular have been usually used non-parametric regression models when the parametric methods failed to fulfillment their aim to analyze the models  precisely. In this case the parametic methods are useless so they turn to non-parametric methods for its easiness in programming. Non-parametric methods can also used to assume the parametric regression model for subsequent use. Moreover, as an advantage of using non-parametric methods is to solve the problem of Multi-Colinearity between explanatory variables combined with nonlinear data. This problem can be solved by using kernel ridge regression which depend o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 04 2021
Journal Name
Journal Of Interdisciplinary Mathematics
Employ shrinkage technique during estimate normal distribution mean
...Show More Authors

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Mon Nov 01 2010
Journal Name
Iraqi Journal Of Physics
Calculation the mass attenuation coefficient of beta-particles through Polyvinyl chloride
...Show More Authors

The mass attenuation coefficient for beta particles through pure Polyvinyl chloride (PVC) and flax fibers- reinforced PVC composite were investigated as a function of the absorber thickness and the absorber to source distance. The beta particles mass attenuation coefficients were obtained using a NaI(Tl) energy selective scintillation counter with 90Sr/ 90Y beta source having an energy range from (0.546-2.275) MeV. Pure PVC polymer samples were prepared by compacting the PVC powder in a mould at high pressure (10bar) and temperature about 140°C for 30 minutes. A hot press system was used for this process. The experimentally obtained values of mass attenuation coefficients for 90Sr and 90Y were found to be 7.72 cm2.g-1and 0.842 cm2.g-1 r

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref