This study was carried out in Artificial Insemination Center of Iraq to revealed FMD disease effect on some seminal attributer parameters of 14 imported Holstein bulls divided to three groups according to different reproductive efficiency (four High, five medium and five weak). Results showed that FMD disease had significant (P < 0.05) adverse effect on most seminal attributer parameters, mass, individual motility and sperm concentration / ml during post disease in first of two, four, all months of high, medium and weak semen quality bulls respectively .but semen volume didn’t influenced significantly with this disease. So semen collection should be suspended until resume normal fertility of sperm, after two, four month of high and medium bulls respectively, and must be revealed weak bulls when disease happen to avoid the failure of conception from artificial insemination and there is no economic benefit to use or keep weak bulls
The aim of this paper, is to discuss several high performance training algorithms fall into two main categories. The first category uses heuristic techniques, which were developed from an analysis of the performance of the standard gradient descent algorithm. The second category of fast algorithms uses standard numerical optimization techniques such as: quasi-Newton . Other aim is to solve the drawbacks related with these training algorithms and propose an efficient training algorithm for FFNN
With the high usage of computers and networks in the current time, the amount of security threats is increased. The study of intrusion detection systems (IDS) has received much attention throughout the computer science field. The main objective of this study is to examine the existing literature on various approaches for Intrusion Detection. This paper presents an overview of different intrusion detection systems and a detailed analysis of multiple techniques for these systems, including their advantages and disadvantages. These techniques include artificial neural networks, bio-inspired computing, evolutionary techniques, machine learning, and pattern recognition.
Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual info
... Show Moreالمستخلص
يعد تقييم اداء العاملين احد اهم الركائز الاساسية التي يتوقف عليها نجاح أي منظمة تسعى بأن تتطور وتتميز بأنشطتها واداءها وبالأخص المنظمات التي لها خصوصية في عملها كالأجهزة الرقابية التي تعتمد في اداء انشطتها ومسؤولياتها على كفاءة مواردها البشرية, ومن هذا المنطلق يهدف هذا البحث الى تصميم انموذج ثلاثي المحاور (المؤهلات والقدرات، الاداء والانجاز، التعاون والالتزام الوظيفي) ثُماني المستويات
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreAbstract: Data mining is become very important at the present time, especially with the increase in the area of information it's became huge, so it was necessary to use data mining to contain them and using them, one of the data mining techniques are association rules here using the Pattern Growth method kind enhancer for the apriori. The pattern growth method depends on fp-tree structure, this paper presents modify of fp-tree algorithm called HFMFFP-Growth by divided dataset and for each part take most frequent item in fp-tree so final nodes for conditional tree less than the original fp-tree. And less memory space and time.
The game of basketball (orange ball) is considered one of the fast and exciting games in the world. It is played by both sexes and different ages. It has Olympic and international championships and has various performance skills, including defensive ones. This game requires physical abilities that players must have for duties during matches, including special endurance that is compatible with... The peculiarity of the game is the changing rhythm and positions on the field. The importance of the research lies in the importance of special exercises to develop special endurance and its role in influencing the defensive skill performance of the players throughout the duration of the match.The problem of the research appeared in the decline in i
... Show MoreThe method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.
This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural
... Show MoreHuman beings are greatly inspired by nature. Nature has the ability to solve very complex problems in its own distinctive way. The problems around us are becoming more and more complex in the real time and at the same instance our mother nature is guiding us to solve these natural problems. Nature gives some of the logical and effective ways to find solutions to these problems. Nature acts as an optimized source for solving the complex problems. Decomposition is a basic strategy in traditional multi-objective optimization. However, it has not yet been widely used in multi-objective evolutionary optimization.
Although computational strategies for taking care of Multi-objective Optimization Problems (MOPs) h
... Show More