We used to think of grammar as the bones of the language and vocabulary as the flesh to be added given that language consisted largely of life generated chunks of lexis. This “skeleton image” has been proverbially used to refer to that central feature of lexis named collocation- an idea that for the first 15 years of language study and analysis gave a moment‟s thought to English classroom material and methodology.
The work of John Sinclair, Dave Willis, Ron Carter, Michael McCarthy, Michael Lewis, and many others have all contributed to the way teachers today approach the area of lexis and what it means in the teaching/learning process of the language. This also seems to have incorporated lexical ideas into the teaching mechanism and highlighted that the present knowledge of the nature of English lexis and collocation in particular raises a set of important issues for teachers in the first place. Such issues are:
1. Given that grammar still rules the sentence, lexis should be one of the principle organizing parts of the syllabus;
2. The need for different strategies for vocabulary learning at different stages of learning, both in and outside the classroom;
3. The need for more developed techniques that would help the students record and store lexis in ways that could enable them to retrieve and revise the proper words for examinations, i.e., lead them to become „lexis collectors‟.
30
4. The need for a fresh look at bilingual dictionaries every now and then given that conventional dictionaries cannot give all the information necessary about collocation.
5. Lexis is an area where literal translation is often impossible; a collocation in English may be totally different in Spanish or German and thus the implication of translation should not be discarded as it is essential in English. (The translation skills of the non-native speaking teachers must be recognized in this area.)
6. The two main components of language (grammar and vocabulary) merge into one another and the dividing line is much less clear cut than teachers and textbooks often operate; yet accuracy must be treated as a late-acquired skill.
Eight different Dichloro(bis{2-[1-(4-R-phenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})iron(II) compounds, 2–9, have been synthesised and characterised, where group R=CH3 (L2), OCH3 (L3), COOH (L4), F (L5), Cl (L6), CN (L7), H (L8) and CF3 (L9). The single crystal X-ray structure was determined for the L3 which was complemented with Density Functional Theory calculations for all complexes. The structure exhibits a distorted octahedral geometry, with the two triazole ligands coordinated to the iron centre positioned in the equatorial plane and the two chloro atoms in the axial positions. The values of the FeII/III redox couple, observed at ca. −0.3 V versus Fc/ Fc+ for complexes 2–9, varied over a very small potential range of 0.05 V.
... Show MoreThe purpose of the current work was to evaluate the effect of Radiation of Gamma on the superconducting characteristics of the compound PbBr2Ca1.9Sb0.1Cu3O8+δ utilizing a 137Cs source at doses of 10, 15, and 20MRad. Solid state reaction technology was used to prepare the samples. Before and after irradiation, X-ray diffraction (XRD) and superconductor properties were examined. Results indicated that the tetragonal structure of our chemical corresponds to the Pb-1223 phase with an increase in the ratio c/a as a result of gamma irradiation. (Tc (onset) ) and on set temperature Tc (offset)) were also dropping from 113 to the 85.6 K and 129.5 to 97 K, respectively, for a transition temperatu
The eaction of 2 4 .6-trihydroxyactophenonemonohydra1e with
l hydr.azine monohydrate was realized ti·nder reflu.(( in methanol and i:l.
Jew drops of glacial acetic acid we.re added to give lhe'(int rmediate)
2-(1hydr pno-ctbyt)-benzcne-·1.3.5-r:Qql, which reacted wittl
saEcy.laldehyde. jn methm)ql to gjy;e 'a new :tyRe CNzOi) Ligand (H:flL]
f(2-{1-[(2-=bydroxy-bertzylide·ne)-bydrazqoo,J-e·thy.1}bcnze·neJ ;3·,5
|
The reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show MoreThe preparation and spectral characterization of complexes for Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) ions with new organic heterocyclic azo imidazole dye as ligand 2-[(2`-cyano phenyl) azo ]-4,5-diphenyl imidazole ) (2-CyBAI) were prepared by reacting a dizonium salt solution of 2-cyano aniline with 4,5-diphenyl imidazole in alkaline ethanolic solution .These complexes were characterized spectroscopically by infrared and electronic spectra along with elemental analysis‚ molar conductance and magnetic susceptibility measurements. The data show that the ligand behaves a bidantate and coordinates to the metal ion via nitrogen atom of azo and with imidazole N3 atom. Octahedral environment is suggested for all metal complex
... Show MoreNew bidentate Schiff base ligand (L) namely [(Z)-3-(2-oxoindolin-3ylildeneamino)benzoic acid] type (NO) was prepared via condensation of isatin and 3-amino benzoic acid in ethanol as a solvent in existence of drops of (glac. CH3COOH). The new ligand (L) was characterized base on elemental microanalysis, FT-IR, UV-Vis, 1H-NMR spectra along with melting point. Ligand complexes in general formula [M(L)2Cl2]. H2O, where: MII = Co, Cu, Cd, and Hg; L= C15H10 N2O3 were synthesized and identified by FT-IR, UV-Vis, 1H-NMR (for Cd complex only) spectra, atomic absorption, chloride content along with molar conductivity and magnetic susceptibility. It was found that the ligand behaves as bidentate on complexation via (N) atom of imine group an
... Show MoreThe synthesis of [1,2-diaminoethane-N,N'-bis(2-butylidine-3- onedioxime)] [II2L] and its cobalt(II), nickel(II), copper(II), palladium(II), platinum(II, IV), zinc(II), cadmium(II) and mercury(II) complexes is reported. The compounds were characterised by elemental analyses, spectroscopic methods [I.R, UV-Vis, ('H NMR. and EI mass for H2L)], molar conductivities, magnetic moments. I.R. spectra show that (H2L) behaves as a neutral or mononegative ligand depending on the nature of the metal ions. The molar conductance of the complexes in (DMSO) is commensurate with their ionic character. On the basis of the above measurements, a square planar geometry is proposed for NOD, Pd(II), and Pt(II) complexes, and an octahedr-al structure with trans
... Show More