In the name of of Allah the Merciful
Praise be to God, and blessings and peace be upon the Messenger of God, Muhammad, and upon his family and his family and peace, and after:
The honor of every knowledge of honor is related to it, and since the science of interpretation is related to the Book of God Almighty; it is considered one of the most noble and longest of sciences, and this science began long ago as the early ages of Islam have expanded the Islamic state, and people entered the religion of God in cohorts, and the mixture mixed In tongues, and people did not know much about the meanings of the Qur’an, so the need for authorship in this great knowledge was severe, and perhaps one of the first to write about the meanings of the Qur’an (Abu Ubaidah) in his book (The Metaphor of the Qur’an), Abu Ubaidah was influenced by his specialization in Arabic science, which made it the feature Notable for his book.
I found that many researchers took up this book with study from the linguistic, grammatical, and morphological fields, but I did not find anyone who talked about the explanatory aspects in it, hence the idea to write this research which deals with (Abu Ubaidah's interpretative approach in the metaphor of the Qur’an).
I have dealt with this book by reading, to determine the features of the approach taken by Abu Ubaida in it and which I will mention in the folds of the research plan shortly, and I took it upon myself to demonstrate what I decided for him by hitting some examples from his book to explain this and then compare it with other specialists, to see the extent of his approval Or his contradiction with them, knowing that the difference between him and those who joined him was that he wrote his book before the features of the interpreters' curricula became clear, and before specific rules were set for them.
The research was divided into an introduction, and three sections: I dedicated the first topic: to talk about the life and knowledge of Abu Ubaidah, and the second topic: on the approach of Abu Ubaidah in the interpretation of the dictum, and there are four requirements: the first demand: in the interpretation of the Qur’an in the Qur’an, and the second requirement in the interpretation of the Qur’an in the Sunnah And the third requirement: in the interpretation of the Qur’an with the sayings of the companions, the followers, and the fourth requirement on: the interpretation of the Qur’an with the reasons for descent, and the third topic: in the interpretation of Abu Ubaidah the Qur’an with an opinion, and it has five requirements: the first requirement: the interpretation of the Qur’an in the language, and the second requirement: the interpretation of the Qur’an with dependence as , And the third requirement: the interpretation of the Qur’an relying on a For Arab poetry, and the fourth requirement: Interpretation of the Qur’an by multiplying proverbs, and then concluded the research with the most important findings.
I have referred in that to the mothers of the books in the interpretation, language, hadith, translations, and others, and if I was injured, then God is the best and has the grace. To God, Lord of the worlds.
The syntheses, characterizations and structures of three novel dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II), [M(L)2Cl2], complexes (metal = Mn, Co and Ni) are presented. In the solid state the molecules are arranged in infinite hydrogen-bonded 3D supramolecular structures, further stabilized by weak intermolecular π…π interactions. The DFT results for all the different spin states and isomers of dichloro(bis{2-[1-phenyl-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) complexes, [M(L1)2Cl2], support experimental measurements, namely that (i) d5 [Mn(L1)2Cl2] is high spin with S = 5/2; (ii) d7 [Co(L1)2Cl2] has a spin state of S = 3/2, (iii) d8 [Ni(L1)2Cl2] has a spin state of S =
... Show MoreNovel bidentate Schiff bases having nitrogen-sulphur donor sequence was synthesized from condensation of racemate camphor, (R)-camphor and (S)-camphor with Methyl hydrazinecarbodithioate (SMDTC). Its metal complexes were also prepared through the reaction of these ligands with silver and bismuth salts. All complexes were characterized by elemental analyses and various physico-chemical techniques. These Schiff bases behaved as uninegatively charged bidentate ligands and coordinated to the metal ions via ?-nitrogen and thiolate sulphur atoms. The NS Schiff bases formed complexes of general formula, [M(NS)2] or [M(NS)2.H2O] where M is BiIII or AgI, the expected geometry is octahedral for Bi(III) complexes while Ag(I) is expected to oxidized t
... Show MoreIn two commercial broiler breeds (Cobb 500 and Hubbard F-15), the polymorphisms of the chicken insulin-like growth factor 2 (IGF2) gene were studied. A total of three hundred avian blood samples were obtained. Using a fast salt-extraction technique, genomic DNA was isolated. Using polymerase chain reaction, 1146 bp fragments of the gene were amplified (PCR). The amplified fragments were subjected to restriction enzyme digestion using HinfI endonuclease enzyme, and the digested products were separated on a 2% agarose gel. The findings indicated two alleles T and C for the target locus, with respective frequencies of 73.3% and 26.7%. Three distinct genotype variations, TT, TC, and CC, were found, with genotype frequencies of 59.1 percent, 28.
... Show Morenew six mixed ligand complexes of some transition metal ions Manganese (II), Cobalt(II), Iron (II), Nickel (II) , and non transition metal ion zinc (II) And Cadmium(II) with L-valine (Val H ) as a primary ligand and Saccharin (HSac) as a secondary ligands have been prepared. All the prepared complexes have been characterized by molar conductance, magnetic susceptibility infrared, electronic spectral, Elemental microanalysis (C.H.N) and AA . The complexes with the formulas [M(Val)2(HSac)2] M= Mn (II) , Fe (II) , Co(II) ,Ni(II), Cu (II),Zn(II) and Cd(II) L- Val H= (C5H11NO2) , C7H5NO3S The study shows that these complexes have octahedral geometry; The metal complexes have been screened for their in microbiological activities against bacteria.
... Show MoreIn this work , the ligand [N-(4-Methoxybenzoyl amino)-thioxomethyl] Methionine acid has been synthesized by the reaction of 4- Methoxybenzoyl isothiocyanate with methionine acid . The metal complexes were prepared through the reaction of metals chlorides of Co(II) , Ni(II), Cu(II), Zn(II) and Cd(II) in ethanol as solvent . The ligand (MbM) and its metal complexes have been characterized by elemental analysis (CHNS), IR, 1H-13CNMR and UV- Vis spectra, magnetic susceptibility measurements, molar conductivity, melting points and atomic absorption. The metal-ligand ratio was determined by mole ratio method. The suggested structures for the Co(II), Ni(II), Cd(II) and Zn(II) complexes are tetrahedral geometry and the Cu(II) complex
... Show MoreComparison is the most common and effective technique for human thinking: the human mind always judges something new based on its comparison with similar things that are already known. Therefore, literary comparisons are always clear and convincing. In our daily lives, we are constantly forced to compare different things in terms of quantity, quality, or other aspects. It is known that comparisons are used in literature in order for speech to be clear and effective, but when these comparisons are used in everyday speech, it is in order to convey the meaning directly and quickly, because many of these expressions used daily are comparisons. In our research, we discussed this comparison as a means of metaphor and expression in Russia
... Show MoreThis work focuses on the preparation of pure nanocrystalline SnO2 and SnO2:Cu thin films on cleaned glass substrates utilizing a sol-gel spin coating and chemical bath deposition (CBD) procedures. The primary aim of this study is to investigate the possible use of these thin films in the context of gas sensor applications. The films underwent annealing in an air environment at a temperature of 500 ◦C for duration of 60 minutes. The thickness of the film that was deposited may be estimated to be around 300 nm. The investigation included an examination of the structural, optical, electrical, and sensing characteristics, which were explored across various preparation circumstances, specifically focusing on varied
... Show MoreThe research includes the synthesis and identification of the mixed ligands complexes of M(II) Ions in general composition [M(Lyn)2(phen)] Where L- lysine (C6H14N2O2) commonly abbreviated (LynH) as a primary ligand and 1,10-phenanthroline(C12H8N2) commonly abbreviated as "phen," as a secondary ligand . The ligands and the metal chlorides were brought in to reaction at room temperature in ethanol as solvent. The reaction required the following molar ratio [(1:1:2) (metal): phen:2 Lyn -] with M(II) ions, were M = Mn(II),Cu(II), Ni(II), Co(II), Fe(II) and Cd(II). Our research also includes studying the bio–activity of the some complexes prepared against pathogenic bacteria Escherichia coli(-),Staphylococcus(-) , Pseudomonas (-), Bacillus (-)
... Show MoreNew Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin- 2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment me
... Show More