The Diwan of Imam Al-Shafi’i acquires great importance, as Al-Shafi’i is an authority in the language, and when I saw that no one had preceded me in exploring its depths, I took my tool and turned my face towards it intending to study the triple verb in it. I stop at these verbs and the student pauses for their morphological forms, looking at the significance of the triple verb more with one letter, two letters, and three letters, and I found that they are many, and such research cannot contain them all, so the choice came to choose the triple verb more with one letter, and the significance of the increase in it, as the increase in The building necessitates an increase in the meaning, and from here the study was limited to the triple verb more with one letter, as the increase is only in the hamza, as in the (act), and in the weak, as in the (verb) formula, and in the alif, as in the (fael) formula, In this study, I referred to the Holy Qur’an, then to language dictionaries, as well as grammatical extensions, as well as morphological books.
As for the research plan, it came in three sections preceded by an introduction, then a translation of Imam Al-Shafi’i, which included an overview of his name, lineage, birth, and scientific status, as well as his travels in seeking and spreading knowledge, and finally his death, which was in Egypt, may God have mercy on him, then the translation was followed by an introduction that included a brief In the difference between the abstract triple verb and the triple more verb, as well as the letters of the addition and their meanings, then the investigations varied, so the first topic was in the triple verb more with the hamza (do), while the second topic came in the study of the verb more with weakness (he did), then the third topic came to be The conclusion of the research, which was in the study of the triple verb more by a thousand (active), and finally the list of sources.
Environmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route via Anchusa strigosa L. Flowers extract. These nanoparticles were further characterized by FTIR, XRD and SEM techniques. Removing of Gongo red from water was applied successfully by using synthesized CuO NPs which used as an adsorbent material. It was validated that the CuO NPs eliminate Congo red by means of adsorption, and the best efficiency of adsorption was gained at pH (3). The maximum adsorption capacity of CuO NPs for Congo red was observed at (35) mg/g. The equilibrium information for adsorption have been outfitted to the Langmuir, Freundlich, Temkin and Halsey adsorption isot
... Show MoreThe approach of green synthesis of bio-sorbent has become simple alternatives to chemical synths as they use for example plant extracts, plus green synthesis outperforms chemical methods because it is environmentally friendly besides has wide applications in environmental remediation. This paper investigates the removal of ciprofloxacin (CIP) using green tea nano zero-valent iron (GT-NZVI) in an aqueous solution. The synthesized GT-NZVI was categorized using SEM, AFM, BET, FTIR, and Zeta potentials techniques. The spherical nanoparticles were found to be nano zero-valent, with an average size of 85 nm and a surface area of 2.19m2/g. The results showed that the removal efficiency of ciprofloxacin depends on the initial pH (2.5-10),
... Show MoreThis study aims to fabricate and assess the β-tricalcium phosphate (β-TCP) bioactive ceramic coat layer on bioinert ceramic zirconia implants through the direct laser melting technique by applying a long-pulsed Nd:YAG laser of 1064 nm. Surface morphologies, adherence, and structural change in the coatings were evaluated by optical microscopy, field emission scanning electron microscope, hardness, and x-ray diffractometer. The elastic modulus (EM) of the coating was also determined using the nanoindentation test. The quality of the coating was improved when the laser power was 90 W with a decrease in the scan speed to 4 mm s−1. The chemical composition of the coat was maintained after laser processing; also, the Energy Dispersive
... Show More