This study attempts to address the importance of communicative digitization in the field of various arts for the sake of continuity of shopping and aesthetic, artistic and intellectual appreciation of artistic achievements by the recipient on various places of their residence in light of the COVID 19 crisis, and to highlight the importance of the plastic arts of the Iraqi painter exclusively and how it expresses in a contemporary way the environment or life reality in Iraq in light of this crisis. With all its implications affecting the life reality from various aspects and methods of its negative and positive employment. As for the research procedures, the researcher reviewed the research methodology represented by the descriptive analytical approach and the research sample, which included (4) samples, and concluded by analyzing samples, as the most important results were reviewed, among which were: The COVID-19 had an impact on the production and creativity of the contemporary Iraqi artist that accumulated from the life reality (negative and positive to combat it) in the human community in light of this crisis, and that digital communication appeared in COVID-19 in a large way and its importance for the continuation of artistic cultural communication for artistic achievements
This research aims to distinguish the reef environment from the non-reef environment. The Oligocene-Miocene-succussion in western Iraq was selected as a case study, represented by the reefal limestone facies of the Anah Formation (Late Oligocene) deposited in reef-back reef environments, dolomitic limestone of the Euphrates Formation (Early Miocene) deposited in open sea environments, and gypsiferous marly limestone of the Fatha Formation (Middle Miocene) deposited in a lagoonal environment. The content of the rare earth elements (REEs) (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Ho, Tm, Yb, Lu, and Y) in reef facies appear to be much lower than of those in the non-reef facies. The open sea facies have a low content of REEs due to bein
... Show MoreImage fusion is one of the most important techniques in digital image processing, includes the development of software to make the integration of multiple sets of data for the same location; It is one of the new fields adopted in solve the problems of the digital image, and produce high-quality images contains on more information for the purposes of interpretation, classification, segmentation and compression, etc. In this research, there is a solution of problems faced by different digital images such as multi focus images through a simulation process using the camera to the work of the fuse of various digital images based on previously adopted fusion techniques such as arithmetic techniques (BT, CNT and MLT), statistical techniques (LMM,
... Show MoreThis paper presents two main parts: The first part involves manufacturing the specimens form composite material for mechanical testing (tensile, flexural and fatigue tests), then design a custom foot orthesis (CFO) and manufacturing from composite lamination (3nylglass 2carbon fiber 3nylglass) for patient suffer from flexible flat foot since birth and over-pronation. The second part of this research involves a design a model of custom foot orthesis in (solid work 2018) and then analysis of custom foot orthosis in engineering analysis program (ANSYS V.18.2).The applied pressure in boundary condition adopted from Force Sensor Resistance (FSR 402 ) in various regions in foot after wearing composite CFO. Used a composite materials in engineerin
... Show MoreThis paper presents the results of investigating the vibrational characteristics of oblate dish with and without framed structure . A finite element method, was applied to the dynamic analysis of oblate spheroidal shell. Different types of elements were considered in one dimension and two dimensions. It was found that the natural frequencies of oblate shells had two types of behavior against increasing the shell thickness and eccentricity, which are the membrane mode and bending mode –Since – the membrane modes natural frequencies tend to increase with the increasing the eccentricity of oblate, while the bending modes natural frequencies decrease with the increasing the eccentricity till reach the optimum eccentricity.
... Show More
The problem motivation of this work deals with how to control the network overhead and reduce the network latency that may cause many unwanted loops resulting from using standard routing. This work proposes three different wireless routing protocols which they are originally using some advantages for famous wireless ad-hoc routing protocols such as dynamic source routing (DSR), optimized link state routing (OLSR), destination sequenced distance vector (DSDV) and zone routing protocol (ZRP). The first proposed routing protocol is presented an enhanced destination sequenced distance vector (E-DSDV) routing protocol, while the second proposed routing protocol is designed based on using the advantages of DSDV and ZRP and we named it as
... Show MoreA series of liquid crystals comprising a heterocyclics dihydro pyrrole and 1,2,3-triazole rings [VII]-[X] were synthesized by many steps starting from a reaction of 3,3'-dimethyl-[1,1'-biphenyl]- 4,4'-diamine with chloroacetyl chloride in a mixture of solutions DMF and TEA to synthesise the compounds [I], then the compounds [I] reacted with malononitrile in 1,4-dioxane and TEA solutions to produce compounds [II], then the first step is repeated with compound [II] where it reacted with chloroacetyl chloride in mixture of DMF and TEA to give compound [III], this compound reacted with sodium azide in the presence of sodium chloride and DMF as solvent to produce the compound [IV], which reacted with acrylic acid by a 1.3 dipolar reaction in sol
... Show MoreCapillary pressure is a significant parameter in characterizing and modeling petroleum reservoirs. However, costly laboratory measurements may not be sufficiently available in some cases. The problem amplifies for carbonate reservoirs because relatively enormous capillary pressure curves are required for reservoir study due to heterogeneity. In this work, the laboratory measurements of capillary pressure and formation resistivity index were correlated as both parameters are functions of saturation. Forty-one core samples from an Iraqi carbonate reservoir were used to develop the correlation according to the hydraulic flow units concept. Flow zone indicator (FZI) and Pore Geometry and Structure (PGS) approaches were used to identify
... Show MoreCapillary pressure is a significant parameter in characterizing and modeling petroleum reservoirs. However, costly laboratory measurements may not be sufficiently available in some cases. The problem amplifies for carbonate reservoirs because relatively enormous capillary pressure curves are required for reservoir study due to heterogeneity. In this work, the laboratory measurements of capillary pressure and formation resistivity index were correlated as both parameters are functions of saturation. Forty-one core samples from an Iraqi carbonate reservoir were used to develop the correlation according to the hydraulic flow units concept. Flow zone indicator (FZI) and Pore Geometry and Structure (PGS) approaches were used to identify
... Show MoreThe goal of this research is to develop a numerical model that can be used to simulate the sedimentation process under two scenarios: first, the flocculation unit is on duty, and second, the flocculation unit is out of commission. The general equation of flow and sediment transport were solved using the finite difference method, then coded using Matlab software. The result of this study was: the difference in removal efficiency between the coded model and operational model for each particle size dataset was very close, with a difference value of +3.01%, indicating that the model can be used to predict the removal efficiency of a rectangular sedimentation basin. The study also revealed