This research contributes to environmental sustainability by recycling natural waste resources in making clothing products. The research aims to employ palm trees waste in designing belts suitable for contemporary women's fashion trends. Both descriptive and applied research approaches were used. Therefore, a collection of belts was designed and implemented. Then, a questionnaire was used to assess the extent to which the implemented belts achieved in sustainability standards using Likert scale. The sample size was 60 women. The data were analyzed using the SPSS program to calculate the arithmetic mean and standard deviation. One of the significant results of the research is the high average scores of the criteria for achieving sustainability recycling palm waste in the production of belts that can be used with various contemporary fashions. This result indicates the possibility of using palm tree waste in producing clothing accessories which would be more sustainable in than using traditional disposing methods. This research recommends conducting more specialized studies to use the palm trees waste in clothing and textile.
In this work, a CW CO2 laser was used for cutting samples of the fiber-reinforced
plastics (FRP) of three different types of reinforcing material; aramide, glass and carbon.
Cutting process was investigated throughout the variation of some parameters of cutting
process and their effects on cutting quality as well as the effect of an inert gas exist in the
interaction region and finally using a mechanical chopper in order to enhance the cutting
quality. Results obtained explained the possibility to perform laser cutting with high
quality in these materials by good control of the parameters and conditions of the process.
In the present study, gold nanoparticles (AuNPs) were prepared using a simple low cost method synthesized cold plasma at different exposure time . The nanoparticles were characterized using UV-Visible spectra, X-ray diffraction (XRD). The prepared AuNPs showed surface Plasmon resonance centered at 530, 540,and 533 nm. The XRD pattern showed that the strong intense peaks indicate crystalline nature and face centered cubic structure of gold nanoparticles for all samples were prepared .The average crystallite size of the AuNPs was 20-40 nm. Morphology of the AuNPs were carried out using FESEM. Observations show that the AuNPs synthesized we well dispersed with and particle sizes ranging from 9 to 31 nm with spherical shapes which are cle
... Show MoreIn the present work, a D.C. magnetron sputtering system was
designed and fabricated. This chamber of this system includes two
coaxial cylinders made from copper .the inner one used as a cathode
while the outer one used as a node. The magnetic coils located on
the outer cylinder (anode) .The profile of magnetic field for various
coil current (from 2Amp to 14Amp) are shown. The effect of
different magnetic field on the Cu thin films thickness at constant
pressure of 7x10-5mbar is investigated. The result shown that, the
electrical behavior of the discharge strongly depends on the values
of the magnetic field and shows an optimum value at which the
power absorbed by the plasma is maximum. Furthermore, the
pl
A steganography hides information within other information, such as file, message, picture, or video. A cryptography is the science of converting the information from a readable form to an unreadable form for unauthorized person. The main problem in the stenographic system is embedding in cover-data without providing information that would facilitate its removal. In this research, a method for embedding data into images is suggested which employs least significant bit Steganography (LSB) and ciphering (RSA algorithm) to protect the data. System security will be enhanced by this collaboration between steganography and cryptography.
Isolation and identification fungi of Emericella nidulans and Aspergillus flavus from a pinkish and yellowish artificial clay, by using potato dextrose agar (PDA). Results revealed that E. nidulans was the best for degrading anthracene (92.3%) with maximum biomass production (3.7gm/l), compared to A. flavus with the rate of degradation (89%) and biomass production of (1.2gm/l), when methylene blue was used as redox indicator after incubating in a shaker incubator 120rpm at 30Co for 8days. Results indicated that E. nidulans has a high ability of anthracene degradation with the rate of (84%), while A. flavus showed the lower level with (77%) by using HPLC.