The research studies the synthetic sculpture techniques in the outputs of the students of the department of art education in terms of the shape, texture, content and technique, and employing this style by the students of the department of art education on the college of fine arts, university of Diyala. The research consists of four chapters: the first chapter: the research problem summarized by looking for the synthetic sculpture and its importance in the treatment the industrial wastes in our social life, according to modern synthetic techniques, in the American and European sculpture. This technique has been employed in more than one contemporary artistic direction and style.
This study is considered important for the students of the college of fine arts and the researchers and those concerned. It is an introductory source of a group of sculpture techniques in the world and has a social, educational and cultural importance. The aim of the research is to identify the synthetic sculpture techniques in the outputs of the students of the college of fine arts in the university of Diyala in the period of time extending from 2017 until 2018. It consisted of synthetic sculpture techniques. The chapter also consisted of identifying the terms of the research. The second chapter consists of two sections: the first section dealt with the techniques of the synthetic sculpture and the artistic direction s, and the raw material used in the contemporary artistic achievement. As for the second section, it includes the artistic movements after the middle of the twentieth century, and the section focused on the contemporary styles that employed the synthesis technique. The chapter ends with the indicators that can be relied on as a tool for analyzing the works. As for the third chapter: It consists of the research procedures, the research community, methodology, samples, research tool, analysis of the sample and justifications for the choice of (3) samples. These samples have been chosen according to their representation of the research community and its temporal limits, through which the research objective can be reached at after the analysis. The researcher arrived at some results and conclusions including:
1- The shapes of the works differed between the elongation of the lines as in sample (1, 2) or the shape takes semi-complex and horizontal lines as in sample (3) which confirms the variation of axes adopted by the students.
2- The works in the samples (2, 3) appear in the synthetic style due to the use of more than one raw material, while the sample (1) appears in the structural style depending on one material.
Porosity and pore structure are important characteristics of pharmaceutical tablets, since they influence the physical properties, such as mechanical strength, density and disintegration time. This paper is an attempt to investigate the pore structure of four different paracetamol tablets based on mercury porosimetry. The intrusion volumes of mercury were used to calculate the pore diameter, pore volume and pore size distribution. The result obtained indicate that the variation of the pore volume in the tablets followed the sequence:- S.D.I. Iraq? Pharmacare,Dubai-U.A.E.? Bron and Burk(UK) London?Lark Laboratories(India), while the variation of surface area followed the sequence:- S.D.I. Iraq? Lark Laboratories(India)? Pharmacare,Dubai-U.A
... Show MoreIn this work, a flat-plate solar air heater (FSAH) and a tubular solar air heater (TSAH) were designed and tested numerically. The work investigates the effect of increasing the contact area between the flowing air and the absorber surface of each heater and predicts the expected results before the fabrication of the experimental rig. Three-dimensional two models were designed and simulated by the ANSYS-FLUENT 16 Program. The solar irradiation and ambient air temperature were measured experimentally on December 1st 2022, at the weather conditions of Baghdad City- Iraq, at three air mass flow rates, 0.012 kg/s, 0.032 kg/s, and 0.052 kg/s. The numerical results showed the advantage in the thermal performance of
... Show MoreThis research aims to introduce a new technique-off-site and self-form segmental concrete masonry arches fabrication, without the need of construction formwork or centering. The innovative construction method in the current study encompasses two construction materials forms the self-form masonry arches, wedge-shape plain concrete voussoirs, and carbon fiber-reinforced polymer (CFRP) composites. The employment of CFRP fabrics was for two main reasons: bonding the voussoirs and forming the masonry arches. In addition, CFRP proved to be efficient for strengthening the extrados of the arch rings under service loadings. An experimental test was conducted on four sophisticated masonry arch specimens. The research parameters were the Keystone thic
... Show MorePlane cubics curves may be classified up to isomorphism or projective equivalence. In this paper, the inequivalent elliptic cubic curves which are non-singular plane cubic curves have been classified projectively over the finite field of order nineteen, and determined if they are complete or incomplete as arcs of degree three. Also, the maximum size of a complete elliptic curve that can be constructed from each incomplete elliptic curve are given.
This paper deals with the nonlinear large-angle bending dynamic analysis of curved beams which investigated by modeling wave’s transmission along curved members. The approach depends on the wave propagation in one-dimensional structural element using the method of characteristics. The method of characteristics (MOC) is found to be a suitable method for idealizing the wave propagation inside structural systems. Timoshenko’s beam theory, which includes transverse shear deformation and rotary inertia effects, is adopted in the analysis. Only geometrical non-linearity is considered in this study and the material is assumed to be linearly elastic. Different boundary conditions and loading cases are examined.
From the results obtai
... Show MoreThe present investigation considers the effect of curing temperatures (30, 40, and 50˚C) and curing compound method on compressive strength development of high performance concrete, and compares the results with concrete cured at standard conditions and curing temperature (21˚C). The experimental results showed that at early ages, the rate of strength development at high curing temperature is greater than at lower curing temperature, the maximum increasing percentage in compressive strength is 10.83% at 50C˚ compared with 21C˚ in 7days curing age. However, at later ages, the strength achieved at higher curing temperature has been less, and the maximum percentage of reduction has been 5.70% at curing temperature 50C˚ compared with 21
... Show MoreCuInSe2(CIS) thin films have been prepared by use vacuum thermal evaporation technique, of thickness750 nm with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant) by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can make to control it are wide applications as an optoelectronic devices and photovoltaic applications.
We examine 10 hypothetical patients suffering from some of the symptoms of COVID 19 (modified) using topological concepts on topological spaces created from equality and similarity interactions and our information system. This is determined by the degree of accuracy obtained by weighing the value of the lower and upper figures. In practice, this approach has become clearer.
CuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.