تشغل الفضاءات الداخلية الطبية اهتمام واسع , لما توفره من رعاية صحية للمرضى ,فلابد ان يُهتَمْ بها من الجانب الوظيفي(الادائي), لتحقيق الراحة البصرية والنفسية والجسدية لغرض الوصول الى الاداء الجيد للكادر الطبي, ولهذا وجد ضرورة التعرف على تلك الفضاءات الداخلية بشكل اعمق , وهل انها ملاءمة للمرتكزات التصميمية المتعارف عليها؟ , لذلك تم تسليط الضوء على الفضاءات الداخلية للمختبرات الطبية, وقد تناول البحث المشكلة واهميتها والهدف وتحديد المصطلحات, وشمل الإطار النظري مبحثين، فتناول المبحث الأول الشكل وخصائصه والعناصر المعرفة للفضاء الداخلي وأما المبحث الثاني فهو التنظيم الشكلي في الفضاء الداخلي للمختبرات الطبية والعناصر البصرية, أما إجراءات البحث فقد اعتمد البحث المنهج الوصفي في تحليل العينة عن طريق استمارة التحليل التي شملت محاور نتجت عن مؤشرات الاطار النظري , وقد تم اختيار عينة البحث بشكل قصدي, وفي نهاية الدراسة البحثية يتم عرض اهم النتائج والاستنتاجات والتوصيات والمقترحات , ومن ابرزالنتائج البحثية للدراسة الحالية :
R. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.
<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>
The aim of the present work is to define a new class of closed soft sets in soft closure spaces, namely, generalized closed soft sets (
In this paper we introduce a new type of functions called the generalized regular
continuous functions .These functions are weaker than regular continuous functions and
stronger than regular generalized continuous functions. Also, we study some
characterizations and basic properties of generalized regular continuous functions .Moreover
we study another types of generalized regular continuous functions and study the relation
among them
In this paper, we introduce and study the concept of a new class of generalized closed set which is called generalized b*-closed set in topological spaces ( briefly .g b*-closed) we study also. some of its basic properties and investigate the relations between the associated topology.
The objective of this paper is to define and introduce a new type of nano semi-open set which called nano -open set as a strong form of nano semi-open set which is related to nano closed sets in nano topological spaces. In this paper, we find all forms of the family of nano -open sets in term of upper and lower approximations of sets and we can easily find nano -open sets and they are a gate to more study. Several types of nano open sets are known, so we study relationship between the nano -open sets with the other known types of nano open sets in nano topological spaces. The Operators such as nano -interior and nano -closure are the part of this paper.
The aim of this paper is to introduce and study new class of fuzzy function called fuzzy semi pre homeomorphism in a fuzzy topological space by utilizing fuzzy semi pre-open sets. Therefore, some of their characterization has been proved; In addition to that we define, study and develop corresponding to new class of fuzzy semi pre homeomorphism in fuzzy topological spaces using this new class of functions.
In thisipaper, we introduce the concepts of the modified tupledicoincidence points and the mixed finiteimonotone property. Also the existenceiand uniquenessiof modified tupled coincidenceipoint is discusses without continuous condition for mappings having imixed finite monotoneiproperty in generalizedimetric spaces.
This paper introduces cutpoints and separations in -connected topological spaces, which are constructed by using the union of vertices set and edges set for a connected graph, and studies the relationships between them. Furthermore, it generalizes some new concepts.