The study entitled (Anthropometric Treatments of the Study Seat Units Used in Elementary stages) highlighted the relations between the sizes of dimensions of the study seats and the different anthropometric sizes of the students. The study problem is manifested in the following question: what are the anthropometric treatments used in the design of the study seats in the elementary stages? The research aims at finding design treatments for the anthropometric variables of the study seats used in the elementary stages, because the study seats have to do with preserving students health and safety through providing an ideal seating mechanism compatible with the anthropometric variables which enhances comfort, safety and focus in the most important educational institution, in which the students spend half of their time, i.e. the school. The descriptive approach has been adopted in the analysis of the samples which represented (3. 33 %) of the research community. The results have shown that the design processes of the formal formations for the study seat units are (100%) incompatible with the anthropometric dimensions in the seat bench body (depth of the seat) in the samples (1-2) which resulted in discomfort and weakness in performance. The lack of backrests in study seat units led to poor functional effectiveness, and they lack safety and security for the students in the three samples with (100%). The study came up with important conclusions that the designer's prior knowledge of the anthropometric measures of the student contributes to activating the performance side( the functional and the formal) in order to achieve the integration feature for the student and the study seat units.
The present study explores the solar-induced photocatalytic degradation of reactive red (RR) and reactive turquoise (RT) dyes in a single system using TiO2 immobilized in xanthan gum (TiO2/XG), synthesized using the sol–gel dip-coating technique for direct precipitation. SEM-EDX, XRD, FTIR, and UV–Vis were used to assess the characteristics of the resulting catalyst. Moreover, the effects of different operating parameters, specifically pH, dye concentration, TiO2/XG concentration, H2O2 concentration, and contact time, were also investigated in a batch photocatalytic reactor. The immobilized TiO2/XG catalyst showed a slight adsorption degradation efficiency and then improved the RR and RT dye degradation activity (92.5 and 90.8%
... Show MoreThe complexity and partially defined nature of jet grouting make it hard to predict the performance of grouted piles. So the trials of cement injection at a location with similar soil properties as the erecting site are necessary to assess the performance of the grouted piles. Nevertheless, instead of executing trial-injected piles at the pilot site, which wastes money, time, and effort, the laboratory cement injection devices are essential alternatives for evaluating soil injection ability. This study assesses the performance of a low-pressure laboratory grouting device by improving loose sandy soil injected using binders formed of Silica Fume (SF) as a chemical admixture (10% of Ordinary Portland Cement OPC mass) to di
... Show MoreEncasing glass fiber reinforced polymer (GFRP) beam with reinforced concrete (RC) improves stability, prevents buckling of the web, and enhances the fire resistance efficiency. This paper provides experimental and numerical investigations on the flexural performance of RC specimens composite with encased pultruded GFRP I-sections. The effect of using shear studs to improve the composite interaction between the GFRP beam and concrete was explored. Three specimens were tested under three-point loading. The deformations, strains in the GFRP beams, and slippages between the GFRP beams and concrete were recorded. The embedded GFRP beam enhanced the peak loads by 65% and 51% for the composite specimens with and without shear connectors,
... Show MoreTannin acyl hydrolase as the common name of tannase is an inducible extracellular enzyme that causes the hydrolysis of galloyl ester and depside bonds in tannins, yielding gallic acid and glucose. The main objective of this study is to find a novel gallic acid and tannase produced by
Introduction and Aim: Cancers are a complex group of genetic illnesses that develop through multistep, mutagenic processes which can invade or spread throughout the body. Recent advances in cancer treatment involve oncolytic viruses to infect and destroy cancer cells. The Newcastle disease virus (NDV), an oncolytic virus has shown to have anti-cancer effects either directly by lysing cancer cells or indirectly by activating the immune system. The green fluorescent protein (GFP) has been widely used in studying the anti-tumor activity of oncolytic viruses. This study aimed to study the anticancer effect of a recombinant rNDV-GFP clone on NCI-H727 lung carcinoma cell line in vitro. Materials and Methods: The GFP gene was inserted t
... Show MoreThe new tridentate Schiff base ligand (HL)namely 2-{[1-(3-amino-phenyl)-ethylidene]-hydrazono methyl}- phenol containing (N N O)as donors atoms was prepared in two steps:Step (1): By the reaction of 3- aminoacetophenone with hydrazine monohydrate under reflux in methanol and drops of glacial acetic acid gave the intermediate compound 3-(1- hydrazono ethyl)-phenol amine.Step (2): By the reaction of 3-(1-hydrazono ethyl)-phenol amine with salicyaldehyde under reflux in methanol, gave the ligand (HL).The prepared ligand was characterized by I.R, U.V-Vis,1H- 13C NMR spectra and melting point and reacted with some metal ions under reflux in methanol with (1:1) ratio gave complexes of the general formula: [MClL]. Where: M= Mn(II), Fe(II), Co(II),
... Show MoreDenture bases are fabricated routinely using Poly(methyl methacrylate) (PMMA) acrylic resin. Yet, it is commonly known for its major drawbacks such as insufficient strength and ductility. The purpose of this study was to improve the performance of PMMA acrylic resin as a denture base material by reinforcement with surface treated lithium disilicate glass ceramic powder. The ceramic powder was prepared by grinding and sieving IPS e.max CAD MT blocks. Then, the powder was surface treated with an organosilane coupling agent (TMSPM) and added to PMMA in amount of 1%, 3%, 5% and 7% by weight. Characterizations of the powder was done by particle size analysis, XRD and FTIR. Transverse strength, Impact strength, Shore D hardness and surface roughn
... Show MoreThis paper presents the implementation of a complex fractional order proportional integral derivative (CPID) and a real fractional order PID (RPID) controllers. The analysis and design of both controllers were carried out in a previous work done by the author, where the design specifications were classified into easy (case 1) and hard (case 2) design specifications. The main contribution of this paper is combining CRONE approximation and linear phase CRONE approximation to implement the CPID controller. The designed controllers-RPID and CPID-are implemented to control flowing water with low pressure circuit, which is a first order plus dead time system. Simulation results demonstrate that while the implemented RPID controller fails to stabi
... Show MoreEmulsion Liquid Membrane (ELM) is an emerging technology that removes contaminants from water and industrial wastewater. This study investigated the stability and extraction efficiency of ELM for the removal of Chlorpyrifos Pesticide (CP) from wastewater. The stability was studied in terms of emulsion breakage. The proposed ELM included n-hexane as a diluent, span-80 as a surfactant, and hydrochloric acid (HCl) as a stripping agent. Parameters such as mixing speed, aqueous feed solution pH, internal-to-organic membrane volume ratio, and external-to-emulsion volume ratio were investigated. A minimum emulsion breakage of 0.66% coupled with a maximum chlorpyrifos extraction and stripping efficiency were achieved at 96.1% and 95.7% at b
... Show More