The theatrical show depends in its formation on the technical system and the elements that it has for the theatrical show, and among these techniques is the lighting, where every director looked for a style and method of implementing them and giving aesthetic functions and characteristics that give the theatrical show an aesthetic and interpretive dimension, and that is through multiple expressions and connotations of the lighting in giving the show a functional and aesthetic character. Therefore, light has been shed on the lighting and its action in the theatrical show, due to its significant role in the modern theatrical shows. The current research, thus, has been divided into four chapters. The first chapter included the research problem which is presented in the form of the following question (identifying the aesthetic dimension of lighting in the academic theatrical shows). The first chapter included a presentation of the importance of the research, which is to benefit everyone who works in lighting specialty, and the study objective which concerns (revealing the aesthetic dimension of the lighting in the academic theatrical shows). As for the research limits, they are defined temporally by the period 2018, and spatially in Baghdad (Jassim Al-Aboudi Theatre). Then the terms mentioned in the research have been specified. The second chapter consists of two sections, the first section is a historical study of the lighting. The second section is a study of the academic theatre. The chapter concluded with the most important indicators of the theoretical framework as follows: 1- The lighting is considered a means that helps in defining shapes and create the aesthetic and expressive dimension for spectator's eyes. 2- The Iraqi theatre presented a group of thoughtful educational shows in the academic institutions. The third chapter included the research procedures, and sample represented by the play (C'est la vie Shakespeare) directed by (dr. Rasel Kadhim). As for the fourth chapter, it included the most important results of the research including:1- Through his design, the designer achieved harmony between the lighting and the technical elements of the show. 2- The lighting designer resorted to employing special lighting devices that help give an artistic and aesthetic dimension for the theatrical show. The research ended with a list of resources and references in addition to an abstract in English.
Nowadays, energy demand continuously rises while energy stocks are dwindling. Using current resources more effectively is crucial for the world. A wide method to effectively utilize energy is to generate electricity using thermal gas turbines (GT). One of the most important problems that gas turbines suffer from is high ambient air temperature especially in summer. The current paper details the effects of ambient conditions on the performance of a gas turbine through energy audits taking into account the influence of ambient conditions on the specific heat capacity ( , isentropic exponent ( ) as well as the gas constant of air . A computer program was developed to examine the operation of a power plant at various ambient temperature
... Show MoreIn this paper synthesis and extensive investigation of the microstructural and optoelectronic properties of polyaniline (PANI), Multiwalled carbon nanotube (MWCNTs) and MWCNTs reinforced PANI composites is presented. MWCNTs- PANI composites have been deposited by spin coating on silicon wafer substrate. Fourier Transform Infrared Spectroscopy shows no difference between PANI and its composites. However a change in peaks shape and absorption intensity has been observed. A strong effect of the MWCNTs weight percentage on the PANI/MWCNTs composites has been demonstrated. It was find that the thermal stability improved with increasing MWCNTs content. The optical band gap of the PANI thin
Exposure to cryogenic liquids can significantly impact the petrophysical properties of rock, affecting its density, porosity, permeability, and elastic properties. These effects can have important implications for various applications, including oil and gas production and carbon sequestration. Cryogenic liquid fracturing is a promising alternative to traditional hydraulic fracturing for exploiting unconventional oil and gas resources and geothermal energy. This technology offers several advantages over traditional hydraulic fracturing, including reduced water consumption, reduced formation damage, and a reduced risk of flow-back fluid contamination. In this study, an updated review of recent studies demonstrates how the
... Show MoreIn this paper, numerical and experimental studies on the elastic behavior of glass fiber reinforced polymer (GFRP) with stiffeners in the GFRP section's web (to prevent local buckling) are presented. The GFRP profiles were connected to the concrete deck slab by shear connectors. Two full-scale simply supported composite beams (with and without stiffeners) were tested under impact load (three-point load) to assess its structural response. The results proved that the maximum impact force, maximum deflection, damping time, and damping ratio of the composite beam were affected by the GFRP stiffeners. The experimental results indicated that the damping ratio and deflection were diminished compare
... Show MoreThe hydrodynamics behavior of gas - solid fluidized beds is complex and it should be analyzed and understood due to its importance in the design and operating of the units. The effect of column inside diameter and static bed height on the minimum fluidization velocity, minimum bubbling velocity, fluidization index, minimum slugging velocity and slug index have been studied experimentally and theoretically for three cylindrical columns of 0.0762, 0.15 and 0.18 m inside diameters and 0.05, 0.07 and 0.09 m static bed heights .The experimental results showed that the minimum fluidization and bubbling velocities had a direct relation with column diameter and static bed height .The minimum slugging velocity had an
... Show MoreA design for a photovoltaic-thermal (PVT) assembly with a water-cooled heat sink was planned, constructed, and experimentally evaluated in the climatic conditions of the southern region of Iraq during the summertime. The water-cooled heat sink was applied to thermally manage the PV cells, in order to boost the electrical output of the PVT system. A set of temperature sensors was installed to monitor the water intake, exit, and cell temperatures. The climatic parameters including the wind velocity, atmospheric pressure, and solar irradiation were also monitored on a daily basis. The effects of solar irradiation on the average PV temperature, electrical power, and overall electrical-thermal efficiency were investigated. The findings i
... Show MoreHigh-rise structures are a significant indication in contemporary urban improvement, mainly in areas characterized by accelerated urban growth and dense population. This type of building should be designed to withstand severe load conditions. Therefore, using composite structural elements in such structures is required for stronger and durable elements. This paper introduces a finite element analysis model for Concrete Filled Stainless Steel Tubular Columns (CFSST) of (100x100) mm cross-section and (1250) mm length to inspect the impact of concrete compressive strength on the response of (CFSST). The generated model was first evaluated through a comprehensive comparison with experimental research. Then, after the model was used to s
... Show MoreFresh water production from saline or waste water utilizing solar stills is the secured future approach in water industry with low cost and no environmental pollution accompanied with low productivity. In this work, the effect of inserting different available materials in a passive Single Slope Solar SSS stills on their productivity is accomplished. Side by side tests are performed on a conventional still, and three SSS stills inserted with carbon filter media, Copper wire mesh, and Cellulose sheets. All these stills are symmetrical in dimensions with 0.5 m2 base area tested for 20mm water level. The stills have been manufactured, instrumented, and tested in July 2021 under DhiQar-Iraq climate conditions (latitude 31.2° N, longitude 46.34
... Show More