Empirical research in the disciplines of art and design has started to escalate and gather consideration within the academic community over the past few decades. However, still, graphic design tends to be a topic extremely under-researched by scholarly persons. Profound research in the field of graphic design extends far beyond the works produced by the designer himself (Khoury, 2009, p.844). In order to develop a clear insight, one needs to delve deep into the subcategories that the diverse field of graphic design is comprised of, including illustration, typography, interaction design, branding and even the impact of notable, eminent institutes from around the world that have taken the budding artists for quite a long time (Walker, 2017). This research paper has been carefully developed for similar purposes. It aims to address the impact of the world-famous Cranbrook Institute on graphic design over these years. It seeks to remove existing gaps of literature by investigating the history and overview of the institute and come up with evidence and conclusions about its successes and downfalls over the period of time.
Ball and Plate (B&P) system is a benchmark system in the control engineering field that has been used to verify many control methods. In this paper the design of a sliding mode . controller has been investigated and verified in real-time via implementation on a real ball and plate system hardware. The mathematical model has been derived and the necessary parameters have been measured. The sliding mode controller has been designed based on the obtained mathematical model. The resulting controller has been implemented using the Arduino Mega 2560 and a ball and plate system built completely from scratch. The Arduino has been programmed by the Arduino support target for Simulink. Three test signals has been used for verification purposes
... Show MoreLowering the emission, fuel economy and torque management are the essential
requirements in the recent development in the automobile industry. The main engine control
input that satisfies the above requirements is the throttling angle which adjusts the air mass
flow rate to the engine port. Due to the uncertainty and the presence of the nonlinear
components in its dynamical model, the sliding mode control theory is utilized in this work
for the throttle valve angle control system to design a robust controller for this system in the
presence of a nonlinear spring and Coulomb friction. A continuous sliding mode control law
which consists of a saturation function, instead of a signum function, and the integral of
ano
This paper proposes a new structure for a Fractional Order Sliding Mode Controller (FOSMC) to control a Twin Rotor Aerodynamic System (TRAS). The new structure is composed by defining two 3-dimensional sliding mode surfaces for the TRAS model and introducing fractional order derivative integral in the state variables as well as in the control action. The parameters of the controller are determined so as to minimize the Integral of Time multiplied by Absolute Error (ITAE) performance index. Through comparison, this controller outperforms its integer counterpart in many specifications, such as reducing the delay time, rise time, percentage overshoot, settling time, time to reach the sliding surface, and amplitude of chattering in control inpu
... Show MoreIn this paper a new structure for the AVR of the power system exciter is proposed and designed using digital-based LQR. With two weighting matrices R and Q, this method produces an optimal regulator that is used to generate the feedback control law. These matrices are called state and control weighting matrices and are used to balance between the relative importance of the input and the states in the cost function that is being optimized. A sample power system composed of single machine connected to an infinite- bus bar (SMIB) with both a conventional and a proposed Digital AVR (DAVR) is simulated. Evaluation results show that the DAVR damps well the oscillations of the terminal voltage and presents a faster respo
... Show MoreLiquefied petroleum gases (LPG) consist of hydrocarbons obtained by refining crude oil, either from propane or butane or a mixture of the two. There are often other components such as propylene, butylene or other hydrocarbons, but they are not the main component. The study aims to review previous studies dealing with designing an LPG system to deliver gas to residential campuses and buildings. LPG is extracted from natural gas NG by several processes, passing through fractionation towers and then pressuring into CNG storage tanks. Gas contains several problems, including gas leakage through the pipes and leads to fires or explosions in LPG storage and distribution tanks, so safety conditions were taken in the design and implementation. T
... Show MoreSolid state blue laser source is a solid state laser include generation of IR laser light 1064 nm and companied with other wavelength 810 nm that invented from other active medium (Tm:ZBLAN) and non-linear crystal (CLBO) are used to generate fourth harmonic of the resultant wavelength 1874 nm that is blue laser light of 460nm. Several optical component have been designed by multilayer dielectric structure and anti reflection coating analysis. By using MATLAB soft ware, the simulation done and used the following non linear material (ZrO2, HfO2, MgO, SiO, Ta2O5 CaF2) and other linear material (ZnO, MgF2, GaAs, AlAs, BaF2, LiF, TiO2) as coating material. The result showed that as more quarter wave layers are added to the structure, the refl
... Show MoreThis paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the
... Show MoreThe formal diversity in designs is achieved by creating shapes and lines with a distinct movement pattern, which are preceded by mental processes. The greatest source of diversity in design in general and industrial design in particular is the creation of multiple directions for the completion of designs and the diversification of intellectual proposals for the design idea. The human activity that takes place around us in various fields of life takes place due to the diversity of movement in the form of the design product and its effectiveness through the dynamic diversity in the form, which differs in the methods of designing and showing it. He invents material value as a distinct artistic product that he owns A specific form or system
... Show More