The current research is interested in studying the symbol, due to its significant role in the architecture and arts in the holy shrines regardless of their architecture and artistic patterns, through which the symbolic and philosophical connotations insides the holy shrines are revealed. Due to the importance of the topic of the symbol, Almighty God remarked in the holy Quran (He said, "My Lord, make for me a sign." He Said, "Your sign is that you will not [be able to] speak to the people for three days except by gesture. And remember your Lord much and exalt [Him with praise] in the evening and the morning.") (Surat Al-Imran, verse 41). The research consists of two dimensions dealing with symbol and symbolism in its linguistic and terminological sides. Then it addresses its historical aspect as far as its evolution and the scientists' opinions are concerned. Then it addresses the topic of symbol and the symbolic school in arts in general and the Islamic arts in specific heading to the way of employing the symbol in the arts and architecture of the holy shrines, adopting the descriptive analytical approach in conducting this research, knowing that the spatial limits would be the Alawyyad, Hussaini, and Abbasi shrines in Iraq and the Radhawi shrine in Iran. As for the temporal limit, the researcher will tackle multiple periods that add to the research and its methodology a feature of scientific realism.
The investor needs to a clear strategy for the purpose of access to the financial market, that is, has a plan to increase The share of the profits thinking entrepreneur and new, and highlights the importance of this in that it sets for the investor when it goes to the market, and when it comes out of it, and at what price to buy or sell the stock, and what is the the amount of money it starts. Fortunately, he does not need to invent his own investment strategy, because over the years the development of effective methods of buying and selling, and once you understand how to work these methods investor can choose the most appropriate methods and adapted image that fit his style investment .
&nb
... Show MoreTwo well-known fluorescent molecules: fluorescein sodium salt (FSS) and 2,7-dichloro fluorescein (DCF) were tried to prove the efficiency, trustability and repeatability of ISNAG fluorimeter by using discrete and continuous flow injection analysis modes.A linear range of 0.002-1 mmol/L for FSS and 0.003-0.7 mmol/L was for DCF, with LOD 0.0018 mmol/L and 0.002 mmol/L for FSS and DCF respectively, were obtained for discrete mode of analysis. While the continuous mode gave a linear range of 0.002-0.7 mmol/L and 0.003-0.5 mmol/L for FSS and DCF respectively, the LOD were 0.0016mmol/L and 0.0018 mmol/L for FSS and DCF respectively. The results were compared with classical method at variable λex for both fluorescent molecules at 95
... Show MoreThe effect of thickness variation on some physical properties of hematite α-Fe2O3 thin films was investigated. An Fe2O3 bulk in the form of pellet was prepared by cold pressing of Fe2O3 powder with subsequent sintering at 800 . Thin films with various thicknesses were obtained on glass substrates by pulsed laser deposition technique. The films properties were characterized by XRD, and FT-IR. The deposited iron oxide thin films showed a single hematite phase with polycrystalline rhombohedral crystal structure .The thickness of films were estimated by using spectrometer to be (185-232) nm. Using Debye Scherrerś formula, the average grain size for the samples was found to be (18-32) nm. Atomic force microscopy indicated that the films had
... Show MoreThe reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show More