The current research is interested in studying the symbol, due to its significant role in the architecture and arts in the holy shrines regardless of their architecture and artistic patterns, through which the symbolic and philosophical connotations insides the holy shrines are revealed. Due to the importance of the topic of the symbol, Almighty God remarked in the holy Quran (He said, "My Lord, make for me a sign." He Said, "Your sign is that you will not [be able to] speak to the people for three days except by gesture. And remember your Lord much and exalt [Him with praise] in the evening and the morning.") (Surat Al-Imran, verse 41). The research consists of two dimensions dealing with symbol and symbolism in its linguistic and terminological sides. Then it addresses its historical aspect as far as its evolution and the scientists' opinions are concerned. Then it addresses the topic of symbol and the symbolic school in arts in general and the Islamic arts in specific heading to the way of employing the symbol in the arts and architecture of the holy shrines, adopting the descriptive analytical approach in conducting this research, knowing that the spatial limits would be the Alawyyad, Hussaini, and Abbasi shrines in Iraq and the Radhawi shrine in Iran. As for the temporal limit, the researcher will tackle multiple periods that add to the research and its methodology a feature of scientific realism.
organic chmistry
In the present work is the deposition of copper oxide using the pulsed laser deposition technique using Reactive Pulsed Laser as a Deposition technique (RPLD), 1.064μm, 7 nsec Q-switch Nd-YAG laser with 400 mJ/cm2 laser energy’s has been used to ablated high purity cupper target and deposited on the porous silicon substrates recorded and study the effect of rapid thermal annealing on the structural characteristics, morphological, electrical characteristics and properties of the solar cell. Results of AFM likelihood of improved absorption, thereby reducing the reflection compared with crystalline silicon surface. The results showed the characteristics of the solar cell and a clear improvement in the efficiency of the solar cell in the
... Show MoreFabrication of porous clay refractory insulating specimens from Iraqi kaolin with different percentage of Expanded Polystyrene (EPS) waste crumbs additions were investigated. After mixing and forming by hand molding, the specimens was dried and fired at 1300 oC. The structural, physical, mechanical and thermal properties of the refractory insulating products were measured. Maximum addition of EPS (1.25 wt%) lead to reduce the linear shrinkage to less than 1.7% and increased apparent porosity up to 50 %. As well as, the density, Modulus of rupture and thermal conductivity were reduced to 1.39 g/cm3, 4.1 MPa and 0.21 W/m.K, respectively. The final outcome, addition of EPS showed good results in the formation of pores without distorting the
... Show MoreIncreasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off
... Show MoreTo evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and mult
... Show MoreThe purpose of this study is to underline the progression and development of research regarding oxygen-containing heterocycles as well as the contribution that some oxygen-containing heterocycles have made as anticancer medicines. A series of publications about the antitumor effects of derivatives of heterocyclic compounds containing an oxygen atom, such as furan, benzofuran, oxazole, benzoxazole, and oxadiazole, were evaluated, and their anticancer activities showed encouraging results when compared to those of established standard treatments.
Flexure members such as reinforced concrete (RC) simply supported beams subjected to two-point loading were analyzed numerically. The Extended Finite Element Method (XFEM) was employed for the treatment the non-smooth h behaviour such as discontinuities and singularities. This method is a powerful technique used for the analysis of the fracture process and crack propagation in concrete. Concrete is a heterogeneous material that consists of coarse aggregate, cement mortar and air voids distributed in the cement paste. Numerical modeling of concrete comprises a two-scale model, using mesoscale and macroscale numerical models. The effectiveness and validity of the Meso-Scale Approach (MSA) in modeling of the reinforced concrete beams w
... Show MoreSpatial Intelligence is a mental ability to understand and solve real-world problems. These visual-spatial representations are fundamental in learning various "STEM" topics, like digital drawing, art presentations, creating graphical representations, 2D designs. Opportunity to interact with real and/or virtual objects. It is a good opportunity in applying new techniques such as the augmenter, which is able to clarify mathematical tables, concepts and generalizations greatly to the visualization, understanding and mastery of concepts mathematically. The purpose of the research is to investigate impact of using AR technology in developing spatial intelligence for secondary school students, Baghdad. The quasi-experimental design was us
... Show MoreThis paper features the modeling and design of a pole placement and output Feedback control technique for the Active Vibration Control (AVC) of a smart flexible cantilever beam for a Single Input Single Output (SISO) case. Measurements and actuation actions done by using patches of piezoelectric layer, it is bonded to the master structure as sensor/actuator at a certain position of the cantilever beam.
The smart structure is modeled based on the concept of piezoelectric theory, Bernoulli -Euler beam theory, using Finite Element Method (FEM) and the state space techniques. The number of modes is reduced using the controllability and observability grammians retaining the first three
dominant vibratory modes, and for the reduced syste