When the digital technologies entered the world of cinema production, they boosted the ability of the cinematographic medium to implement various subjects with great accuracy, as the development included all the joints and stages of the cinematic film production whether it is a feature film or an animation. Therefore, the process of film manufacturing by the digital technologies reflects the spirit of the age and the development that humanity has attained. What motivated the researcher to determine the topic of the research, which combines between the sound effects and the animated films under the title (aesthetics of employing digital sound effects in animated films), is the work of the digital technologies. The researcher divided his study into five sections as follows:
The methodological framework: included the research problem which is incorporated in the following question: the aesthetics of employing the digital sound effects in the animated films? The importance of the research and the need for it, the research objectives, limits, and identification of terms.
The theoretical framework: consists of two sections as follows:
The first section: digital sound effects: historical introduction: it included everything concerning the sound effects, i.e. origin, methods of employment, its technological development according the methods adopted in the construction of the sound effect. The second section: the dramatic construction of the animated films: it included the dramatic construction of the animation films. The researcher has come up with a set of indicators which represent the theoretical framework.
The research procedures: included the research methodology, research community, research sample and analysis tools in addition to the sample validation.Sample analysis: the researcher analyzed the intentional sample which is an animated film (WALL- E) directed by Andrew Stanton. Results and conclusions: it included the most prominent results the research has come up with: the digital sound effects constituted a clear aesthetic addition in the animated films through expressing the spatial environment in all its minute details as has been shown in the film (WALL- E).
The researcher listed the conclusions, recommendations and suggestions and ended the research with a list of references and appendices.
Reflection cracking in asphalt concrete (AC) overlays is a common form of pavement deterioration that occurs when underlying cracks and joints in the pavement structure propagate through an overlay due to thermal and traffic-induced movement, ultimately degrading the pavement’s lifespan and performance. This study aims to determine how alterations in overlay thickness and temperature conditions, the incorporation of chopped fibers, and the use of geotextiles influence the overlay’s capacity to postpone the occurrence of reflection cracking. To achieve the above objective, a total of 36 prism specimens were prepared and tested using an overlay testing machine (OTM). The variables considered in this study were the thickness of the
... Show MoreConventional flexible pavements are released to different types of failure in the initial phases of their service life due to high traffic density, high speeds, heavy loads, and harsh climates. To eliminate pavement damage and failure early, the present search investigates the impact of adding glass, steel, and basalt fibers in the asphalt mixtures. Also, the study evaluates these materials characteristics compared to the mixtures without fibers. The Marshall test and tensile strength ratio test (TSR) were utilized to evaluate the asphalt mixture's performance. A set of specimens were produced by incorporating glass fiber (GF), steel fiber (SF), and basalt fiber (BF) at (0.10%, 0.15%, 0.20%), (0.25%, 0.35%, 0.45%), and (0.15%, 0.35%
... Show MoreThis paper studies the combination fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. It works by connecting the central core, comprising either shear walls or braced frames, to the outer perimeter columns.
The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model, and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximum lateral load at the top of the building is calculated, and this load w
... Show MoreThe optical properties for the components CuIn(SexTe1-x)2 thin films with both values of selenium content (x) [0.4 and 0.6] are studied. The films have been prepared by the vacuum thermal evaporation method with thickness of (250±5nm) on glass substrates. From the transmittance and absorbance spectra within the range of wavelength (400-900)nm, we determined the forbidden optical energy gap (Egopt) and the constant (B). From the studyingthe relation between absorption coefficient (α) photon energy, we determined the tails width inside the energy gap.
The results showed that the optical transition is direct; we also found that the optical energy gap increases with annealing temperature and selenium content (x). However, the width of l
CdSe alloy has been prepared successfully from its high purity elements. Thin films of this alloy with different thicknesses (300,700)nm have been grown on glass substrates at room temperature under very low pressure (10-5)Torr with rate of deposition (1.7)nm/sec by thermal evaporation technique, after that these thin films have been heat treated under low pressure (10-2)Torr at (473,673)K for one hour. X-ray patterns showed that both CdSe alloy and thin films are polycrystalline and have the hexagonal structure with preferential orientation in the [100] and [002] direction respectively. The optical measurements indicated that CdSe thin films have allowed direct optical energy band gap, and it increases from (1.77- 1.84) eV and from
... Show MoreIn this report Silver doped Tin Sulfide (SnS) thin films with ratio of (0.03) were prepared using thermal evaporation with a vacuum of 4*10-6 mbar on glass with (400) nm thickness and the sample annealing with ( 573K ). The optical constants for the wavelengths in the range (300-900) nm and Hall effect for (SnS and SnS:3% Ag) films are investigated and calculated before and after annealing at 573 K. Transition metal doped SnS thin films the regular absorption 70% in the visible region, the doping level intensification the optical band gap values from 1.5- 2 eV. Silver doped tin sulfide (SnS) its direct optical band gap. Hall Effect results of (SnS and SnS:3% Ag) films show all films were (p-type) electrical conductivity with resistivity of
... Show MoreEffect of the thermal annealing at 400oC for 2 hours and Argon laser radiation for half hour on the optical properties of AgAlS2 thin films, prepared on glass slides by chemical spray pyrolysis at 360oC with (0.18±0.05) μm thickness .The optical characteristics of the prepared thin films have been investigated by UV/Vis spectrophotometer in the wavelength range (300 – 1100)nm .The films have a direct allow electronic transition with optical energy (Eg) values decreased from (2.25) eV for untreated thin films to (2.10) eV for the annealed films and to (2.00) eV for the radiated films. The maximum value of the refractive index (n) for all thin films are given about (2.6). Also the extinction coefficient (K) and the real and imaginary d
... Show MoreCadmium sulfide and Aluminum doped CdS thin films were prepared by thermal evaporation technique in vacuum on a heated glass substrates at 373K. A comparison between the optical properties of the pure and doped films was made through measuring and analyzing the transmittance curves, and the effect of the annealing temperature on these properties were estimated. All the films were found to exhibit high transmittance in the visible/ near infrared region from 500nm to 1100nm.The optical band gap energy was found to be in the range 2.68-2.60 eV and 2.65-2.44 eV for CdS and CdS:Al respectively , with changing the annealing temperature from room temperature to 423K.Optical constants such as refractive index, extinction coefficient, and complex di
... Show MoreThe structural, optical properties of cupper indium gallium selenite (CuIn1-xGaxSe) have been studied. CuIn1-xGaxSe thin films for x=0.6 have been prepared by thermal evaporation technique, of 2000±20 nm thickness, with rate of deposition 2±0.1 nm/sec, on glass substrate at room temperature. Heat treatment has been carried out in the range (373-773) K for 1 hour. It demonstrated from the XRD method that all the as-deposited and annealed films have polycrystalline structure of multiphase. The optical measurement of the CIGS thin films conformed that they have, direct allowed energy gap equal to 1.7 eV. The values of some important optical parameters of the studied films such as (absorption coefficient, refractive index, extinction coeffici
... Show More