The constructivist learning model is one of the models of constructivist theory in learning, as it generally emphasizes the active role of the learner during learning, in addition to that the intellectual and actual participation in the various activities to help students gain the skills of analyzing artistic works. The current research aims to know the effectiveness of the constructivist learning model in the acquisition of the skills of the Institute of Fine Arts for the skills of (technical work analysis). To achieve the goal, the researcher formulated the following hypothesis: There are no statistically significant differences between the average scores of the experimental group students in the skill test for analyzing artworks before and after.
The theoretical framework included the concept of constructivism and the structural model and its stages, as the researcher presented the taste and analysis of technical work and has adopted in its procedures the experimental one-group approach with two tests (pre-dimensional), as it is the most appropriate approach to achieve the goal of the current research. The research community consisted of male (2264) students of institutes of fine arts for the academic year 2019-2020. The basic research sample chose: The Institute of Fine Arts - the first Rusafa, numbering (30) students, where the choice was made for the fifth stage students - Design Department, after conducting the simple random lottery and conducted the pre-skill test to determine the levels of students in the artistic taste analysis Technical works and comparing its bicycles to the post-skill test scores. The researcher also prepared a form to evaluate the skill performance of students in their implementation of the requirements of the skill test consisted of (10) paragraphs for which he specified a five-point scale, and thus the total score obtained by the student in his analysis of the technical work is equal to (50) stairs . It was presented to the experts, and in light of their observations, it became usable and after honesty and consistency were achieved for them, it was applied to the basic sample of the research. Statistical methods were used; the researcher used the statistical bag (spss) to process the data. After applying the skill test, the results indicated the appearance of a difference in the average score of the experimental group between the pre and posttests, and the direction of this difference referred to the post skill test, due to the sequence followed in students' learning and their acquisition of technical analysis skills according to the constructive learning model.
Based on the results that have emerged, the researcher concludes the following:
1- The ability of the constructive learning model to acquire cognitive information in the technical taste subject for fifth stage students.
2- The emergence of capabilities and capabilities of the fifth stage students in the analysis of technical work after they have acquired the steps of analysis according to the analytical premises of the structural approach.
The researcher suggested conducting the following studies:
1- Conducting a comparative study of the constructive learning model and other forms of learning to determine which is more effective in acquiring technical work analysis skills.
2- Carrying out similar studies to the current study, according to other modern monetary approaches, such as semiotic, deliberative, and deconstructive.
Key words: effectiveness - constructive learning model - acquisition - skill - analysis - technical work.
The effect of internal acoustic excitation on the leading-edge, separated boundary layers and the aerodynamic performance of NACA23015 cross section airfoil are examined as a function of excitation location with ranging frequency range (50-400) Hz of the introduced acoustic. Tests are separately conducted in two sections, open type wind tunnels at the Reynolds number of 3.3x105 for measurement at angle of attack (0, 3, 6, 9 &12) deg. and 3x104 for the visualization at angle of attack (12) deg. based on the airfoil chord. Results indicated that the excitation frequency and the excitation location are the key parameters to alter the flow properties and thus to improve the aerodynamic performance. The most effective excitation frequency
... Show MoreIn this experimental study, the use of stone powder as a stabilizer to the clayey soil studied. Tests of Atterberg limits, compaction, fall cone (FCT), Laboratory vane shear (LVT), and expansion index (EI) were carried out on soil-stone powder mixtures with fixed ratios of stone powder (0%, 5%, 10%, 15%, and 20%) by the dry weight. Results indicated that the undrained shear strength obtained from FCT and LVT increased at all the admixture ratios, and the expansion index reduced with the increase of the stone powder.
A significant influence of temperature width found on the vanadium oxide properties, it plays a major role in highlighting the thermal limits of the three phases (metallic, semiconductor, and dielectric). Two values of the temperature width , and , had taken and studied their effect on both the dielectric constant and its two parts; refractive index, and extinction coefficient, and. It found that: as the temperature width is greater, the more the properties of the three phases for . In addition to increasing the thermal range for phases which can be reached to when , while it's at . Our results have achieved great compatibility with the published results globally. In addition to the effect of both ultraviolet, visible, and infrared
... Show More
Nanomaterials have an excellent potential for improving the rheological and tribological properties of lubricating oil. In this study, oleic acid was used to surface-modify nanoparticles to enhance the dispersion and stability of Nanofluid. The surface modification was conducted for inorganic nanoparticles (NPs) TiO₂ and CuO with oleic acid (OA) surfactant, where oleic acid could render the surface of TiO2-CuO hydrophobic. Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM) were used to characterize the surface modification of NPs. The main objective of this study was to investigate the influence of adding modified TiO₂-CuO NPs with weight ratio 1:1 on thermal-physical propertie
... Show MoreGypsum is one of the important construction materials in Iraq in plastering surfaces and gypsum board , the ability of gypsum to give a comfortable an aesthetic ambiance as a construction material increase the need of gypsum , The particle size , total surface area and particle size distribution were factors affecting plaster properties used for construction properties . In this study gypsum paste was used with different mixing ratios of particle size and studied the physical properties of these types of pastes named (standard consistency ,setting time ,density) and compressive strength . The results showed that the water to gypsum ratio increased with increasing the fineness of the gypsum to (0.75%) and the setting time to the maxi
... Show MoreThe scarcity of irrigation water requires procedures of specific. One of these procedures is the implementation of the rationing system (a period of the irrigation followed by a period of the dry). This system can have an impact on the properties of irrigation channels. Therefore, the study of rationing system for irrigation channels is important in both water resources and civil engineering, especially if they are constructed with gypseous soil. In order to assess the rationing system on gypseous canals stabilized with a specific ratio of cement, practical experiments were conducted to detect the effect of wetting and drying cycles on the physical and hydraulic behavior of this soil and calculation of some properties of soil such a
... Show MoreThe electronic structure of zinc blend indium gallium phosphide In0.5Ga0.5P nanocrystals which have dimension (2-2.8 nm) is investigated using the density functional theory coupled with large unit cell (LUC) for the different size core (8 ,16,54,64) atoms respectively. The investigated properties include total energy, energy gap, conduction band, valence band, cohesive energy, ionicity and density of state etc. as a function of core size and lattice constant. Results show the shape effect of increasing the core size and lattice constant on these electronic properties
The general assumption of linear variation of earth pressures with depth on retaining structures is still controversial; investigations are yet required to determine those distributions of the passive earth pressure (PEP) accurately and deduce the corresponding centroid location. In particular, for rigid retaining walls, the calculation of PEP is strongly dependent on the type of wall movement. This paper presents a numerical analysis for studying the influence of wall movement on the PEP distribution on a rigid retaining wall and the passive earth thrust location. The numerical predictions are remarkably similar to existing experimental works as recorded on scaled test models and ful