The current research discusses the topic of the formal data within the methodological framework through defining the research problem, limits and objectives and defining the most important terms mentioned in this research. The theoretical framework in the first section addressed (the concept of the Bauhaus school, the philosophy of the Bauhaus school and the logical bases of this school). The second section dealt with (the most important elements and structural bases of the Bauhaus school) which are considered the most important formal data of this school and their implications on the fabrics and costumes design. The research came up with the most important indicators resulting from the theoretical framework.
Chapter three defined the research method, community, and sample and analysis of the model. Chapter four stated the results and the most important of which are:
1- The sample is representative of the most important formal data of the Bauhaus school its implications of thee fabrics and female costumes designs.
2- Design elements represent a major and distinguished role for all the models of the sample thus achieving the aesthetic function.
3- The formal implications of the Bauhaus school in the fabrics and costumes designs came as a result of employing these data in all the models of the sample.
4- The use of the vocabulary and the formal elements of the Bauhaus was an expression of the civilizational and cultural content specific to this school
Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab
... Show MoreWettability of CO2-brine-mineral systems plays a vital role during geological CO2-storage. Residual trapping is lower in deep saline aquifers where the CO2 is migrating through quartz rich reservoirs but CO2 accumulation within a three-way structural closure would have a high storage volume due to higher CO2 saturation in hydrophobic quartz rich reservoir rock. However, such wettability is only poorly understood at realistic subsurface conditions, which are anoxic or reducing. As a consequence of the reducing environment, the geological formations (i.e. deep saline aquifers) contain appreciable concentrations of various organic acids. We thus demonstrate here what impact traces of organic acids exposed to storage rock have on their wettabil
... Show MoreThis paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreIn this research , design and study a (beam expander) for the Nd – YAG laser with (1.06 ?m) Wavelength has been studied at 5X zoom with narrow diversion in the room temperature. by using (ZEMAX) to study the system. Evaluate its performance via (ZEMAX) outputs, as bright Spot Diagram via (RMS), Ray Fan Plot, Geometric Encircled Energy and the value of Focal shift. Then study the effect of field of view on the outputs in the room temperature.
Tremendous efforts have been exerted to understand first language acquisition to facilitate second language learning. The problem lies in the difficulty of mastering English language and adapting a theory that helps in overcoming the difficulties facing students. This study aims to apply Thomasello's theory of language mastery through usage. It assumes that adults can learn faster than children and can learn the language separately, and far from academic education. Tomasello (2003) studied the stages of language acquisition for children, and developed his theory accordingly. Some studies, such as: (Ghalebi and Sadighi, 2015, Arvidsson, 2019; Munoz, 2019; Verspoor and Hong, 2013) used this theory when examining language acquisition. Thus,
... Show MoreReliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data co
In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.