This research studies the possibility of producing Bone China with available local and geological substitutes and other manufactured ones since it’s traditionally produced by Bone ash, Cornish stone, and China clay, while the substitutes are Kaolin instead of China clay and Feldspar potash instead of Cornish stone. Because of the unavailability of Feldspar in Iraq, it was substituted with the manufactured alternative Feldspar. Bone ash was prepared from cow bones with heating treatments, grinding and sifting. The alternative Feldspar was prepared by chemical analysis of the natural Feldspar potash with local materials that include Dwaikhla Kaolin, Urdhuma Silica sand, Potassium Carbonate, and Sodium Carbonate. The mixture was burned at (1250c○) before it was grinded. The mixture’s materials were sifted at (63µm). The samples were formed with slip casting by gypsum mold with a cut cone shape at (2×3×6 cm) to build a thickness of (3mm). The study materials consisted of two groups: Group 1 (BC.K.F) including Bone ash, Dwaikhla Kaolin, and the natural Feldspar, while Group 2 (BC.K.FR) had Bone ash, Dwaikhla Kaolin, and the manufactured alternative Feldspar. Every group included 8 recipes with the same percentages. The two groups were burned at (1220-1260c○), then tests were conducted: Chemical analyses, the outer appearance and color then the laboratory tests: the outer appearance, linear shrinkage, apparent porosity, water absorption, bulk density, hardness, scratching resistance, mineral analysis (XRD), color analyses, optical transmittance. After discussing and analyzing the results, it was concluded that the traditional materials substitutes gave matching and correspondent properties and specification of Bone China ceramic
Landfill and incineration are the most common and widely used methods to dispose of solid wastes; both of these techniques are considered the main sources of pollution in the world due to the harmful toxic emissions that are considered an environmental problem. Because of the large areas used by landfills, they are not always considered an economical method. With the increase in the production of solid materials, solid wastes increase the pressure on incinerators and landfills, making the environmental pollution hazard more serious. Instead, these waste materials can be used in some other applications. One of the most important of these applications is asphalt pavements, which are the most used types of pavements in the
... Show MoreThe exchanges in various fields,like economics, science, culture, etc., have been enhanced unceasingly among different countries around the world in the twenty-first century, thus, the university graduate who masters one foreign language does not meet the need of the labor market in most countries.So, many universities began to develop new programs to cultivate students who can use more foreign languages to serve the intercultural communication. At the same time, there is more scientific research emerged which is related to the relationship between the second and third languages. This humble research seeks to explain the relevant concepts and analyze the real data collected from Shanghai International Studies University in China, to expl
... Show MoreABSTRACT Fifty extremely halophilic bacteria were isolated from local high salient soils named Al-Massab Al-Aam in south of iraq and were identified by using numerical taxonomy. Fourty strains were belong to the genus Halobacterium which included Hb. halobium (10%). Hb. salinarium (12.5%), Hb.cutirubrum (17.5%), Hb-saccharovorum (12.5%), Hb. valismortis (10%) and Hb. volcanii (37.5%). Growth curves were determined. Generation time (hr) in complex media and logarithmic phase were measured and found to be 10.37±0.59 for Hb. salinarium. 6.49 ± 0.24 for Hb.cutirubrum. 6.70±0.48 for Hb-valismonis, and 11.24 ± 0.96 for Hb. volcanii
Refractories are mineral and chemical-, based, materials with excellent heat resistance, making them ideal for use in the construction of ovens, furnace walls industries. According to this our research is concerned to study the effect of addition of (4% CaO) and (5% graphite) on the silica brick properties. Different amounts of CaO and Graphite were included in the white sand (raw ingredients) of silica bricks as a binder to prepare the composition then the composition were sintered using Different sintering temperatures ranging from (1000–1400)𝛐C under static air. Density, thermal conductivity, porosity, and water absorption Compression there was power tested after sintering. XRD analysis was used to identify raw materials’
... Show MoreFunctionally graded materials (FGMs), with ceramic –ceramic constituents are fabricated using powder technology techniques. In this work three different sets of FGMs samples were designed in to 3 layers, 5 layers and 7 layers. The ceramic constituents were represented by hard ferrite (Barium ferrite) and soft ferrite (lithium ferrite). All samples sintered at constant temperature at 1100oC for 2 hrs. and characterized by FESEM. Some physical properties were measured for fabricated FGMs include apparent density, bulk density, porosity, shrinkage and hardness. The results indicated that the density increase with the increase the number of layer. Lateral shrinkage is one of the important parameter f
... Show MoreEquilibrium and rate of mixing of free flowing solid materials are found using gas fluidized bed. The solid materials were sand (size 0.7 mm), sugar (size0.7 mm) and 15% cast iron used as a tracer. The fluidizing gas was air with velocity ranged from 0.45-0.65 m/s while the mixing time was up to 10 minutes. The mixing index for each experiment was calculated by averaging the results of 10 samples taken from different radial and axial positions in fluidized QVF column 150 mm ID and 900 mm height.
The experimental results were used in solving a mathematical model of mixing rate and mixing index at an equilibrium proposed by Rose. The results show that mixing index increases with inc
... Show MoreThere are many diseases that affect the arteries, especially those related to their elasticity and stiffness, and they can be guessed by estimating and calculating the modulus of elasticity. Hence, the accurate calculation of the elastic modulus leads to an accurate assessment of these diseases, especially in their early stages, which can contribute to the treatment of these diseases early. Most of the calculations used the one-dimensional (1D) modulus of elasticity. From a mechanical point of view, the stresses to which the artery is subjected are not one-dimensional, but three-dimensional. Therefore, estimating at least a two-dimensional (2D) modulus of elasticity will necessarily be more accurate. To the knowledge of researchers, there i
... Show MoreSteel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from co
... Show More