The present research aims at revealing the advertising image semiotics in the American printed poster by following the image's significance and its transformations through the poster design trends and indicating its nature whether it is an explicit or implicit image. The limits of the research were the American printed poster during 2016-2018 period. The theoretical side was determined by two sections, the first: (the advertising image semiotics) and the second (design trends in the printed poster). The research procedures were represented by the research method adopted in the analysis of the sample models identified in four models taken from the research community which contains (24) models. The selection was made according to the trend and type of the mark and then analyzed according to a research tool whose paragraphs were bases taken from the theoretical framework. After analyzing the models that represent the research sample, the researcher reached at a set of results and conclusions and the most prominent of these were that ( the designers aimed at topics devoted in the collective memory such as the pigeon, olive branch, umbrella and freedom statute as part of the act of communication and the communication theory which the designer does not find difficult to convey), in accordance with the subject of his research in light of the focus on the advertising image based on the mark logic and his analysis of the semiotics of that image.
In this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water
... Show More<p class="0abstract">Image denoising is a technique for removing unwanted signals called the noise, which coupling with the original signal when transmitting them; to remove the noise from the original signal, many denoising methods are used. In this paper, the Multiwavelet Transform (MWT) is used to denoise the corrupted image by Choosing the HH coefficient for processing based on two different filters Tri-State Median filter and Switching Median filter. With each filter, various rules are used, such as Normal Shrink, Sure Shrink, Visu Shrink, and Bivariate Shrink. The proposed algorithm is applied Salt& pepper noise with different levels for grayscale test images. The quality of the denoised image is evaluated by usi
... Show MoreA simulation study of using 2D tomography to reconstruction a 3D object is presented. The 2D Radon transform is used to create a 2D projection for each slice of the 3D object at different heights. The 2D back-projection and the Fourier slice theorem methods are used to reconstruction each 2D projection slice of the 3D object. The results showed the ability of the Fourier slice theorem method to reconstruct the general shape of the body with its internal structure, unlike the 2D Radon method, which was able to reconstruct the general shape of the body only because of the blurring artefact, Beside that the Fourier slice theorem could not remove all blurring artefact, therefore, this research, suggested the threshold technique to eliminate the
... Show More<p>In this paper, a simple color image compression system has been proposed using image signal decomposition. Where, the RGB image color band is converted to the less correlated YUV color model and the pixel value (magnitude) in each band is decomposed into 2-values; most and least significant. According to the importance of the most significant value (MSV) that influenced by any simply modification happened, an adaptive lossless image compression system is proposed using bit plane (BP) slicing, delta pulse code modulation (Delta PCM), adaptive quadtree (QT) partitioning followed by an adaptive shift encoder. On the other hand, a lossy compression system is introduced to handle the least significant value (LSV), it is based on
... Show MoreBackground: techniques of image analysis have been used extensively to minimize interobserver variation of immunohistochemical scoring, yet; image acquisition procedures are often demanding, expensive and laborious. This study aims to assess the validity of image analysis to predict human observer’s score with a simplified image acquisition technique. Materials and methods: formalin fixed- paraffin embedded tissue sections for ameloblastomas and basal cell carcinomas were immunohistochemically stained with monoclonal antibodies to MMP-2 and MMP-9. The extent of antibody positivity was quantified using Imagej® based application on low power photomicrographs obtained with a conventional camera. Results of the software were employed
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreThe study focuses on assessment of the quality of some image enhancement methods which were implemented on renal X-ray images. The enhancement methods included Imadjust, Histogram Equalization (HE) and Contrast Limited Adaptive Histogram Equalization (CLAHE). The images qualities were calculated to compare input images with output images from these three enhancement techniques. An eight renal x-ray images are collected to perform these methods. Generally, the x-ray images are lack of contrast and low in radiation dosage. This lack of image quality can be amended by enhancement process. Three quality image factors were done to assess the resulted images involved (Naturalness Image Quality Evaluator (NIQE), Perception based Image Qual
... Show More