The integration of AI technologies is revolutionizing various aspects of the apparel and textile industry, from design and manufacturing to customer experience and sustainability. Through the use of artificial intelligence algorithms, workers in the apparel and textile industry can take advantage of a wealth of opportunities for innovation, efficiency and creativity.
The research aims to display the enormous potential of artificial intelligence in the clothing and textile industry through published articles related to the title of the research using the Google Scholar search engine. The research contributes to the development of the cultural thought of researchers, designers, merchants and the consumer with the importance of integrating artificial intelligence technologies in the fields of the clothing and textile industry to keep pace with technological change.
The research found that the number of results for articles published in Google Scholar in the period of time from (2016-2023 AD) amounted to 1724, and 523 articles were published at a rate of (30%), which is the highest percentage for articles published in Google Scholar, and it was the lowest period of time from 2016-2017 AD. 50 published articles (3%), and the research recommended conducting more studies in the field of artificial intelligence and its applications in the clothing and textile industry.
In This paper, CuO thin films having different thickness (250, 300 , 350 and 400) nm were deposited on glass substrates by thermal vacuum evaporator. The thermal oxidation of this evaporated film was done in heated glass at temperature (300 in air at one hour. The study of X-ray diffraction investigated all the exhibit polycrystalline nature with monoclinic crystal structure include uniformly grains. Thin film’s internal structure topographical and optical properties. Furthermore, the crystallization directions of CuO (35.54 , 38.70 ) can be clearly observed through an X-ray diffraction analysis XRD, Atomic Force Microscope AFM (topographic image) showed that the surface Characteristics , thin films crystals grew with increases in either
... Show MoreThe goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.
The present work introduces, external morphological study of the leafhopper Neoalitarus
fenestratus Herrich-Schäeffer (Deltocephalinae:Oposiini), particularly the male genitalia
which were dissected and illustrated.
High smoke emissions, nitrogen oxide and particulate matter typically produced by diesel engines. Diminishing the exhausted emissions without doing any significant changes in their mechanical configuration is a challenging subject. Thus, adding hydrogen to the traditional fuel would be the best practical choice to ameliorate diesel engines performance and reduce emissions. The air hydrogen mixer is an essential part of converting the diesel engine to work under dual fuel mode (hydrogen-diesel) without any engine modification. In this study, the Air-hydrogen mixer is developed to get a homogenous mixture for hydrogen with air and a stoichiometric air-fuel ratio according to the speed of the engine. The mixer depends on the balance between th
... Show MoreThis paper is concerned with finding solutions to free-boundary inverse coefficient problems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial and boundary conditions as well as non-localized integral observations of zeroth and first-order heat momentum. The direct problem is solved for the temperature distribution and the non-localized integral measurements using the Crank–Nicolson finite difference method. The inverse problem is solved by simultaneously finding the temperature distribution, the time-dependent free-boundary function indicating the location of the moving interface, and the time-wise thermal diffusivity or advection velocities. We reformulate the inverse problem as a non-
... Show More