The achievements of the art that we know today are questioned in motives that differ from what art knew before, including dramatic artistic transformations, which he called modern art.
In view of the enormity of such a topic, its ramifications and its complexity, it was necessary to confine its subject to the origin of the motives of the transformations of its first pioneers, and then to stand on what resulted from that of the data of vision in composition and drawing exclusively, and through exploration in that, we got to know the vitality of change from the art of its time.
And by examining the ruling contemporary philosophical concepts and their new standards and their epistemological role in contemporary life, since they include new artistic and aesthetic values, it was more useful to take them in this research to understand the consistency between thought and art in the current era, and from that the motives of modernization are an approach at the hands of the first pioneers With their homeland of innovative methods in the contemporary artistic experience
This paper aims to study the chemical degradation of Brilliant Green in water via photo-Fenton (H2O2/Fe2+/UV) and Fenton (H2O2/Fe2+) reaction. Fe- B nano particles are applied as incrustation in the inner wall surface of reactor. The data form X- Ray diffraction (XRD) analysis that Fe- B nanocomposite catalyst consist mainly of SiO2 (quartz) and Fe2O3 (hematite) crystallites. B.G dye degradation is estimated to discover the catalytic action of Fe- B synthesized surface in the presence of UVC light and hydrogen peroxide. B.G dye solution with 10 ppm primary concentration is reduced by 99.9% under the later parameter 2ml H2O2, pH= 7, temperature =25°C within 10 min. It is clear that pH of the solution affects the photo- catalytic degradation
... Show MoreThe aim of this study is to show the concepts of nuclear shape and the geometrical picture to the even-even nuclei of 164,166,168E isotopes in the context of the Interacting boson Model IBM-1. The energy spectra were calculated and the effective charge values (eB) of the electromagnetic transition strength were obtained and used to calculate the B(E2) values of the electromagnetic transitions and the quadrupole moment Q of 2+ -states. The Hamiltonian parameters were calculated by taking in account the properties of these nuclei. Comparison were made with the available experimental data and included in tables. The geometrical picture of these nuclei were looked at by calculating the deformation which were represented by the potentia
... Show MoreThe research involves using phenol – formaldehyde (Novolak) resin as matrix for making composite material, while glass fiber type (E) was used as reinforcing materials. The specimen of the composite material is reinforced with (60%) ratio of glass fiber.
The impregnation method is used in test sample preparation, using molding by pressure presses.
All samples were exposure to (Co60) gamma rays of an average energy (2.5)Mev. The total doses were (208, 312 and 728) KGy.
The mechanical tests (bending, bending strength, shear force, impact strength and surface indentation) were performed on un irradiated and irrad
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MoreThe aim of the current study was to develop a nanostructured double-layer for hydrophobic molecules delivery system. The developed double-layer consisted of polyethylene glycol-based polymeric (PEG) followed by gelatin sub coating of the core hydrophobic molecules containing sodium citrate. The polymeric composition ratio of PEG and the amount of the sub coating gelatin were optimized using the two-level fractional method. The nanoparticles were characterized using AFM and FT-IR techniques. The size of these nano capsules was in the range of 39-76 nm depending on drug loading concentration. The drug was effectively loaded into PEG-Gelatin nanoparticles (≈47%). The hydrophobic molecules-release characteristics in terms of controlled-releas
... Show MoreIn this paper deals with the effect laser irradiation on the optical properties of cobalt oxide (CoO2) thin films and that was prepared using semi computerized spray pyrolysis technique. The films deposited on glass substrate using such as an ideal value concentration of (0.02)M with a total volume of 100 ml. With substrate temperature was (350 C), spray rate (15 ml/min).The XRD diffraction given polycrystalline nature with Crystal system trigonal (hexagonal axes). The obtained films were irradiated by continuous green laser (532.8 nm) with power 140 mW for different time periods is 10 min,20min and 30min. The result was that the optical properties of cobalt oxide thin films affe
The primary goal of in-situ load testing is to evaluate the safety and performance of a structural system under particular loading conditions. Advancements in building techniques, analytical tools, and monitoring instruments are prompting the evaluation of the appropriate loading value, loading process, and examination criteria. The procedure for testing reinforced concrete (RC) structures on-site, as outlined in the ACI Building Code, involves conducting a 24-h load test and applying specific evaluation criteria. This article detailed a retrofitting project for an RC slab-beams system by utilizing carbon fiber-reinforced polymer (CFRP) sheets to strengthen the structure following a fire incident. The RC structure showed indicators of deter
... Show MoreDate palm silver nanoparticles are a green synthesis method used as antibacterial agents. Today,
there is a considerable interest in it because it is safe, nontoxic, low costly and ecofriendly. Biofilm bacteria
existing in marketed local milk is at highly risk on population health and may be life-threatening as most
biofilm-forming bacteria are multidrug resistance. The goal of current study is to eradicate biofilm-forming
bacteria by alternative treatment green synthesis silver nanoparticles. The biofilm formation by bacterial
isolates was detected by Congo red method. The silver nanoparticles were prepared from date palm
(khestawy) fruit extract. The formed nanoparticles were characterized with UV-Vis