The research aims to study the effect of adding (Li2O) to an alkaline glaze containing (K2O, Na2O). Although all the alkaline oxides have common properties, each oxide has something that distinguishes it. The molecular weight of (Li2O) is two times less than that of (Na2O) and three times that of (K2O). Therefore, it is added in small proportions. In addition, it is a very strong flux, so it is not used alone, but rather replaces a part of other alkaline oxides. It was added to an alkali glass that matured at a temperature of 980CO in proportions (2.0,1.4,1.2,0.8,0.4%) instead of (Na2O), using lithium carbonate (Li2CO3) as an oxide source. The glazes mixtures were applied to a white pottery body, and the samples were fired and cooled according to programmed timings. After that, the tests and calculations were carried out: virtual and microscopic examinations, density, viscosity, surface tension, thermal expansion, hardness and scratch resistance. After analyzing and discussing the results, it was found that (Li2O) has varying effects on the properties of glazes, some of which are effective and others are less effective
This research investigates new glasses which are best suitable for design of optical systems
working in the infrared region between 1.01 to 2.3μm. This work is extended to Oliva & Gennari
(1995,1998) research in which they found that the best known achromatic pairs are (BAF2-IRG2; SRF2-
IRG3; BAF2-IRG7; CAF2-IRGN6; BAF2-SF56A and BAF2-SF6). Schott will most probably stop the
production of these very little used and commercially uninteresting IRG glasses. In this work equally
good performances can be obtained by coupling BAF2, SRF2&CAF2 with standard glasses from Schott
or Ohara Company. The best new achromatic pairs found are (SRF2-S-TIH10; CAF2-S-LAL9; CAF2-SLAL13
and CAF2-S-BAH27). These new achromatic pai
A research was conducted to determine the feasibility of using adsorption process to remove boron from aqueous solutions using batch technique. Three adsorbent materials; magnesium, aluminum and iron oxide were investigated to find their abilities for boron removal. The effects of operational parameters on boron removal efficiency for each material were determined.
The experimental results revealed that maximum boron removal was achieved at pH 9.5 for magnesium oxide and 8 for aluminum and iron oxide. The percentage of boron adsorbed onto magnesium,aluminum and iron oxide reaches up to 90, 42.5 and 41.5% respectively under appropriate conditions. Boron concentration in effluent water after adsorption via magnesium oxide comply with th
The bubble columns are widely used as a two or three phase reactor in industrial chemical process such as absorption, biochemical reactions, coal liquefaction, etc. To design such a column, two main parameters should be taken in consideration, the gas hold-up (), and the liquid phase mass transfer coefficient KLa. The study includes the effect of gas velocity and the addition of alcohols on gas hold-up and mass transfer coefficient in bubble column with draught tube when the length of the column is 1.5m and the ratio of the draught tube diameter to the column diameter equals 0.5 and the air dispersion into the base of the draught tube using a multi hole tuyere is equivalent to a diameter of 0.15 mm and
... Show MoreThe traction property is one of the important mechanical properties, especially the rotary parts which are subjected to constant and variable loads There are many methods used to improve this property, and the shoot peening by metal balls is considered the most critical one. the study focuses on this characteristic of steel CK35 used in many engineering applications as the rotating shafts and railway This study shows that the fatigue strength is improved by14% after shoot peening with metal balls. The study includs the rehabilitation of damaged samples as a result of fatigue corrosion. The standard solution adopted was 36% MgCl2 with a 30 days immersion period. These samples has been improved by 6% after it decreased by18% d
... Show MoreCarbides or nitrides thin films present materials with good mechanical properties for industrial applications as they can be coatings at low temperatures serve temperature sensitive surfaces. In this work the effect of the C percentage on the mechanical properties represented by the Young modulus (E) of combinatorial magnetron sputtered TiCx (34%x˂65%) has been studied. The structure of the produced films is TiC independent on the C concentration. The mechanical properties are increased with increasing the C concentration up to 50%, and then decreasing with further C % increasing. These results can be explained by considering the resultant residual stresses.
In this research, damping properties for composite materials were evaluated using logarithmic decrement method to study the effect of reinforcements on the damping ratio of the epoxy matrix. Three stages of composites were prepared in this research. The first stage included preparing binary blends of epoxy (EP) and different weight percentages of polysulfide rubber (PSR) (0%, 2.5%, 5%, 7.5% and 10%). It was found that the weight percentage 5% of polysulfide was the best percentage, which gives the best mechanical properties for the blend matrix. The advantage of this blend matrix is that; it mediates between the brittle properties of epoxy and the flexible properties of a blend matrix with the highest percentage of PSR. The second stage
... Show MoreFiber reinforced polymer composite is an important material for structural application. The diversified application of FRP composite has taken center of attraction for interdisciplinary research. However, improvements on mechanical properties of this class of materials are still under research for different applications. In this paper we have modified the epoxy matrix by Al2O3, SiO2 and TiO2 nano particles in glass fiber/epoxy composite to improve the mechanical and physical properties. The composites are fabricated by hand lay-up method. It is observed that mechanical properties like flexural strength, hardness are more in case of SiO2 modified epoxy composite compare to other nano
... Show MoreExperimental work was carried out to investigate the effect of fire flame (high temperature) on specimens of one way slabs using Self Compacted Concrete (SCC). By using furnace manufactured for this purpose, twenty one reinforced concrete slab specimens were exposed to direct fire flame. All of specimens have the same dimensions. The slab specimens were cooled in two types, gradually by left them in the air and suddenly by using water. After that the specimens were tested under two point loads, to study, the effect of
different: temperature levels (300ºC, 500ºC and 700ºC), and cooling rate (gradually and sudden cooling conditions) on the concrete compressive strength, modulus of rupture, flexural strength and the behavior of reinf
In this study the effect of fiber volume fraction of the glass fiber on the thermal conductivity of the polymer composite material was studied. Different fiber volume fraction of glass fibers were used (3%, 6%, 9%, 12%, and 15%). Specimens were made from polyester which reinforced with glass fibers .The fibers had two arrangements according to the direction of the thermal flow. In the first arrangement the fibers were parallel to the direction of the thermal flow, while the second arrangement was perpendicular; Lee's disk method was used for testing the specimens. The experimental results proved that the values of the thermal conductivity of the specimens was higher when the fibers arranged in parallel direction than that when the fibers
... Show MoreThe first studies on shocks and vibrations were carried out at the beginning of the 1930s to improve the behavior of buildings during earthquakes. Vibration tests on aircraft were developed from 1940 to verify the resistance of parts and equipments prior to their first use. Flutter is a well-known example of dynamic aero elasticity, where when oscillation of structure interacted with unsteady aerodynamic forces the flutter will occur. Vibration on any structure without damping means that self-harmonic oscillation will occur, and in most cases the oscillation may start to increase until structural failure. This behavior is very similar to resonance phenomena if only the oscillation is being studied as a vibration case. In vibration suppre
... Show More