Research in the field of biometric simulation is in the design of various and various industrial products, but it still needs new studies and research that are compatible with scientific and technological development, especially in the field of computing. Recognition, deduction, and simulation of nature, for example, the use of animal bones as tools in cutting, hunting or fighting, in addition to the use of animal drawings in cave drawings as symbols of strength, as well as dance movements and face painting to simulate the natural reality that surrounds humans. This trend developed to include simulation of nature in the formal and functional aspect to reach To vocabulary and solutions that help man in his daily life, the research problem is summarized in answering some questions, including what are the methods and methods that are used in bio-simulation and how to compare them, and is it possible to reach a new mechanism, but the objectives of the research were to reveal and compare the methodologies that address Biomimetics and the possibility of reaching a new mechanism in biomimetics. As for the research results, they were summarized as follows:
1- There are a number of methodological approaches that describe the way in which biomimetics are solved.
2- These methods only provide the way to achieve biomimetics, and their application is subject to the designer's direction and thinking.
3- It is important to study the dynamic form in detail in order to get the basic idea of the design.
The inhibitor property of curcuma longa L. extract in different concentrations of simulated refinery wastewater (0.05% - 2% wt) and at various temperatures (30, 35 and 40 ˚C) was investigated using weight loss method. The results showed that the presence of about 1.2 % (v/v) of curcuma extract gave about 84% inhibition indicating its effectiveness on mild steel corrosion in simulated refinery wastewater, besides the adsorption process on the mild steal surface obeyed the Langmuir adsorption isotherm.
Functionalized-multi wall carbon nanotubes (F-MWCNTs) and functionalized-single wall carbon nanotubes (F-SWCNTs) were well enhanced using CoO Nanoparticles. The sensor device consisted of a film of sensitive material (F-MWCNTs/CoONPs) and (F-SWCNTs/CoO NPs) deposited by drop- casting on an n-type porous silicon substrate. The two sensors perform high sensitivity to NO2 gas at room temperatures. The analysis indicated that the (F-MWCNTs/CoONPs) have a better performance than (F-SWCNTs/CoONPs). The F-SWCNTs/CoONPs gas sensor shows high sensitivity (19.1 %) at RT with response time 17 sec, while F-MWCNTs/CoONPs gas sensor show better sensitivity (39 %) at RT with response time 13 sec. The device shows a very reproducible sensor p
... Show MoreTwo samples of (Ag NPs-zeolite) nanocomposite thin films have been prepared by easy hydrothermal method for 4 hours and 8 hours inside the hydrothermal autoclave at temperatures of 100°C. The two samples were used in a photoelectrochemical cell as a photocatalyst inside a cell consisting of three electrodes: the working electrode photoanode (AgNPs-zeolite), platinum as a cathode electrode, and Ag/AgCl as a reference electrode, to study the performance of AgNPs-zeolite under dark current and 473 nm laser light for water splitting. The results show the high performance of an eight-hour sample with high crystallinity compared with a four-hour sample as a reliable photocatalyst to generate hydrogen for renewable energies.
Zinc Oxide (ZnO) is considered as one of the best materials already used as a window layer in solar cells due to its antireflective capability. The ZnO/MgF2 bilayer thin film is more efficient as antireflective coating. In this work, ZnO and ZnO/MgF2 thin films were deposited on glass substrate using pulsed laser deposition and thermal evaporation deposition methods. The optical measurements indicated that ZnO thin layer has an energy gap of (3.02 eV) while ZnO/MgF2 bilayer gives rise to an increase in the energy gap. ZnO/MgF2 bilayer shows a high energy gap (3.77 eV) with low reflectance (1.1-10 %) and refractive index (1.9) leading to high transmittance, this bilayer could be a good candidate optical material to improve the performance
... Show MoreBackground: Mitral valve stenosis is a condition in which the hearts mitral valve is narrowed (stenosis), This narrowing blocks the valve from opening properly obstructing blood flow through the heart and the rest of the body and this causes changes in physical parameters (resistance and conductance). Aim of the study: To assess the changes in the physical parameters in mitral valve stenosis disease in different gender and age by using Doppler ultrasound. Methods : The examination of patients at the Division of Echo - at the Iraqi Center for Heart Disease in Medical City for surgery specialist - Baghdad - Iraq, during(February2009 till November2010). The current study included fifty eight cases containing (27 males and 31 females) ages rang
... Show MoreThe brief description to the theory of propagation of electromagnetic waves in plasma was done. The cutoff and resonance regions have been showed. The principles of plasma heating at electron cyclotron resonance (ECRH) method have been mentioned. The numerical simulation to three different station: Tosca station in United Kingdom, ISX-B station in USA and T-10 station in Russia had been done. The optical depth and the friction of energy absorbed A have been calculated. The simulation results indicate that both and A are increase with size of the tokamak and it is possible to obtain full absorption in large tokamak.
The aim of this paper is to evaluate the rate of contamination in soils by using accurate numerical method as a suitable tool to evaluate the concentration of heavy metals in soil. In particular, 2D –interpolation methods are applied in the models of the spread the metals in different direction.The paper illustrates the importance of the numerical method in different applications, especially nvironment contamination. Basically, there are many roles for approximating functions. Thus, the approximating of function namely the analytical expression may be expressed; the most common type being is polynomials, which are the easy implemented and simplest methods of approximation. In this paper the divided difference formula is used and extended
... Show Morea porentioncsisteve has been carried out of the corrosion behavior of inconel(600) in chloride ions (Cl) over the tempreatures 293 over the temperatures 308K in both the dcacrated and the alloy