Theatrical performances began with the Greeks when the theatrical scenes and skeletal figures were encoded, where the large wall of the Alskina, which contains three doors, the middle of them with a high height, and the two sides took the natural size, where the middle door indicated a symbolism of the god or demigods, as we find the condensation of the symbol in the architecture of the theater, and the symbol was taken In the theatrical scene, the development semantically and aesthetically, and interpreting and interpreting the current day, where the laser light formed the symbolism of the contemporary virtual scene, and in order to identify the aesthetics of the symbol in the theatrical scene, the current research was evaluated into four chapters: The first chapter (the methodological framework) which contained the research problem that The question was (What are the aesthetics of the symbol in the Iraqi theatrical appearance?) The aim of the research was (to identify the aesthetics of the symbol in the Iraqi theatrical scene). As for the second chapter (the theoretical framework), it was divided into sections: The first topic: the aesthetic manifestations of the symbol / the second topic: the use of the symbol in the aesthetic theatrical scene. The third chapter came (research procedures), (research community/research sample) (presentation of the picnic play, and research methods (descriptive and analytical), while the fourth chapter contained the research results and conclusions and concluded the research with a list of sources
In this work, the plasma parameters (electron temperature and
electron density) were determined by optical emission spectroscopy
(OES) produced by the RF magnetron Zn plasma produced by
oxygen and argon at different working pressure. The spectrum was
recorded by spectrometer supplied with CCD camera, computer and
NIST standard of neutral and ionic lines of Zn, argon and oxygen.
The effects of pressure on plasma parameters were studied and a
comparison between the two gasses was made.
There is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn
New Fe(II),Co(II),Ni(II),Cu(II) and Zn(II) Schiff base complexes which have the molar ratio 2:1 metal to ligand of the general formula [M2( L) X4] (where L=bis(2-methyl furfuraldene)-4-4`-methylene bis(cyclo-hexylamine) ) were prepared by the reaction of the metal salts with the ligand of Schiff base derived from the condensation of 2:1 molar ratio of 2-acetyl furan and 4-4`-methylene bis (cyclohexylamine). The complexes were characterized by elemental analysis using atomic absorption spectrophotometer ,molar conductance measurements, infrared, electronic spectra,and magnetic susceptibility measurement. These studies revealed binuclear omplexes. The metal(II) ion in these complexes have four coordination sites giving the most ex
... Show MoreImproving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
A new Azo‐Schiff base ligand L was prepared by reaction of m‐hydroxy benzoic acid with (Schiff base B) of 3‐[2‐(1H–indol‐3‐yl)‐ethylimino]‐1.5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylamine. This synthesized ligand was used for complexation with different metal ions like Ni(II), Co(II), Pd(II) and Pt(IV) by using a molar ratio of ligand: metal as 1:1. Resulted compounds were characterized by NMR (1H and 13C), UV–vis spectroscopy, TGA, FT‐IR, MS, elemental analysis, magnetic moment and molar conductivity studies. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and
... Show More