The organization and coordination of any communication is based on the system of turn-taking which refers to the process by which a participant in a conversation takes the role of speaker. The progression of any conversation is achieved by the change of roles between speaker and hearer which, in its turn, represents the heart of the turn-taking system. The turn-taking system is not a random process but it is a highly organized process governed by a set of rules. Thus, this system has certain features and rules which exist in any English communicative process. These rules, if applied by speakers, help to achieve successful exchange of turns in any conversation. This paper attempts to present full exposition of the concepts of conversation, conversation analysis and institutional talk. This is the subject-matter of section one. In the second section, a comprehensive theoretical background of turn-taking system has been presented. The paper mainly aims at making detailed analysis of the Turn-taking system in the American Presidential Debates. The analysis is done in the third section by investigating and examining the corpus which consists of three American Presidential Debates chosen randomly. These debates are: 1. Republican presidential candidate debate in Simi Valley, California January 30, 2008. 2. Republican presidential candidate debate in Washington, DC November 22, 2011. 3. Republican presidential candidate debate in Des Moines December 10, 2011. The three debates have been downloaded from the internet from the website http://www.presidency.ucsb.edu/debates.php. In each debate, there are a number of presidential candidates who have different political orientations. The analysis is presented through certain points supported by statistics and examples which are in the form of quoted extracts chosen from the three debates analyzed. Section four is devoted for presenting the conclusions arrived at throughout conducting the analysis of the three debates.
In this paper we deal with the problem of ciphering and useful from group isomorphism for construct public key cipher system, Where construction 1-EL- Gamal Algorithm. 2- key- exchange Algorithm
Abstract: A home-made dc sputtering is characterized by cathode potential of 250-2500 V and sputtering gas pressures of (3.5×10-2 – 1.5) mbar. This paper studies in experiment the breakdown of argon, nitrogen, and oxygen in a uniform dc electric field at different discharge gaps and cathode potentials. Paschen curves for Argon, Nitrogen, and oxygen are obtained by measuring the breakdown voltage of gas within a stainless steel vacuum chamber with two planar, stainless steel electrodes. The Paschen curves in Ar, N2, and O2 gases show that the breakdown voltage between two electrodes is a function of pd (The product of the pressure inside the chamber and distance between the electrodes). Current-voltage characteristics visualization of the
... Show MoreA security system can be defined as a method of providing a form of protection to any type of data. A sequential process must be performed in most of the security systems in order to achieve good protection. Authentication can be defined as a part of such sequential processes, which is utilized in order to verify the user permission to entree and utilize the system. There are several kinds of methods utilized, including knowledge, and biometric features. The electroencephalograph (EEG) signal is one of the most widely signal used in the bioinformatics field. EEG has five major wave patterns, which are Delta, Theta, Alpha, Beta and Gamma. Every wave has five features which are amplitude, wavelength, period, speed and frequency. The linear
... Show MoreThe development of the internet of things (IoT) and the internet of robotics (IoR) are becoming more and more involved with our daily lives. It serves a variety of tasks some of them are essential to us. The main objective of SRR is to develop a surveillance system for detecting suspicious and targeted places for users without any loss of human life. This paper shows the design and implementation of a robotic surveillance platform for real-time monitoring with the help of image processing, which can explorer places of difficult access or high risk. The robotic live streaming is via two cameras, the first one is fixed straight on the road and the second one is dynamic with tilt-pan ability. All cameras have image processing capabilities t
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreOne of the concerns of adopting an e-voting systems in the pooling place of any critical elections is the possibility of compromising the voting machine by a malicious piece of code, which could change the votes cast systematically. To address this issue, different techniques have been proposed such as the use of vote verification techniques and the anonymous ballot techniques, e.g., Code Voting. Verifiability may help to detect such attack, while the Code Voting assists to reduce the possibility of attack occurrence. In this paper, a new code voting technique is proposed, implemented and tested, with the aid of an open source voting. The anonymous ballot improved accordingly the paper audit trail used in this machine. The developed system,
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show More