Medical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform well in certain medical image applications.The aim of this paper is to change the medical image into something that is more meaningful and easier to analyze and recognize features that helps the doctors to diagnoses the diseases .This paper views selected medical image and segmentation method that have been proposed, which are suitable for processing medical images by use the modification of the traditional interactive threshold technique. This method gave good results,and these results are testedaccordingto the measure of quality (PSNR).
Abstract
The objective of image fusion is to merge multiple sources of images together in such a way that the final representation contains higher amount of useful information than any input one.. In this paper, a weighted average fusion method is proposed. It depends on using weights that are extracted from source images using counterlet transform. The extraction method is done by making the approximated transformed coefficients equal to zero, then taking the inverse counterlet transform to get the details of the images to be fused. The performance of the proposed algorithm has been verified on several grey scale and color test images, and compared with some present methods.
... Show MoreAlthough the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .
In this paper a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet
... Show MoreThis paper presents a proposed method for (CBIR) from using Discrete Cosine Transform with Kekre Wavelet Transform (DCT/KWT), and Daubechies Wavelet Transform with Kekre Wavelet Transform (D4/KWT) to extract features for Distributed Database system where clients/server as a Star topology, client send the query image and server (which has the database) make all the work and then send the retrieval images to the client. A comparison between these two approaches: first DCT compare with DCT/KWT and second D4 compare with D4/KWT are made. The work experimented over the image database of 200 images of 4 categories and the performance of image retrieval with respect to two similarity measures namely Euclidian distance (ED) and sum of absolute diff
... Show MoreAn oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification
... Show MoreThe increased size of grayscale images or upscale plays a central role in various fields such as medicine, satellite imagery, and photography. This paper presents a technique for improving upscaling gray images using a new mixing wavelet generation by tensor product. The proposed technique employs a multi-resolution analysis provided by a new mixing wavelet transform algorithm to decompose the input image into different frequency components. After processing, the low-resolution input image is effectively transformed into a higher-resolution representation by adding a zeroes matrix. Discrete wavelets transform (Daubechies wavelet Haar) as a 2D matrix is used but is mixed using tensor product with another wavelet matrix’s size. MATLAB R2021
... Show MoreABSTRACT Background: The Iraqi hospital witnessed numerous violence incidents against medical staff working in emergency department and range from verbal to physical violence. High frequency of these attacks urged the Iraqi doctors for migration. Aim of study: To identify the prevalence of workplace violence against medical staff and to and study the risk factors related to work place violence. Materials and methods: A descriptive cross sectional study carried out among a sample of 300 medical
the Objective of study is to measure the quality of medical service level, in the Iraq public hospitals ,presented by special words ,private hospitals, and compare between them, by knowing the level of recipients satisfaction of medical service for all dimensions of quality service, and then measuring satisfaction with the quality of medical service as a whole for both of them, which have been prepared in questionnaire form, included two main directions, first to determine the level of satisfaction when, recipients of medical service is not dimensions quality of service in accordance with the Scale Servqual by (Parasurman et .al 1988), consisting of five di
... Show MoreAbstract
Much attention has been paid for the use of robot arm in various applications. Therefore, the optimal path finding has a significant role to upgrade and guide the arm movement. The essential function of path planning is to create a path that satisfies the aims of motion including, averting obstacles collision, reducing time interval, decreasing the path traveling cost and satisfying the kinematics constraints. In this paper, the free Cartesian space map of 2-DOF arm is constructed to attain the joints variable at each point without collision. The D*algorithm and Euclidean distance are applied to obtain the exact and estimated distances to the goal respectively. The modified Particle Swarm Optimization al
... Show MoreThis paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show More