Preferred Language
Articles
/
jcoeduw-88
Mindfulness and Its Relation to Self Regulated Learning Among University Students
...Show More Authors

Mindfulness is considered a process to draw an image of the active event and to creat new social varieties which leaves the individuals open to modernity and to be sensitive towards the context. in contrast, when individuals act with less attention, they need to be more determined concerning the varieties and events of the past . and as a result , they become unaware of the characteristics that creat the individual condition .The problem of the current study is represented in asking about the nature of the possible relationship between mindfulness and self-regulated learning within specific demographic frame of an importantsocial category represented in university students where no previous researches nor theories have agreed on the nature of the relationship between those 2 variables. and no local study-as far as the researcher concerned-has tackled this vital topic within this wide and important class of the society which is the youth .
The objectives of the study is as the following:
1- Measuring mindfulness in the study in a sample and to enhance its statistical significance.
2- Measuring mindfulness according to the variables of gender (male-female) and academical disciplines (humanities-sciences) and to enhance their statistical significance.
3 - to identify the nature of the relationship between mindfulness and self-regulated learning in the study sample and to enhance its statistical significance.
The study sample is consisted of 400 male and female student selected randomly from 8 colleges in University of Baghdad,4 humanities colleges and 4 sciences colleges.and in order to achieve the objectives of the study,a measurement tool for mindfulness has been prepared in light of the measurements,literary references and previous studies that addressed this variable.and after analyzing the paragraphs using the 2 extreme groups method and the relation of the paragraph degree with the total degree of the measurement tool,all of its 25 paragraphs have been approved which scored stability factor average of (0,71) according to the split-half method and (0,82) according to Cronbach alfa method.and for the second variable,self-regulated learning,the researcher used the self-regulated learning measurement tool which was prepared by Al-Suraifi in 2008.which contains 39 paragraphs in its final form.and its stability was extracted by split-half method with average of (0,85) and Cronbach alfa method (0,93).
And heres the summary of the study outcomes :
1-the current study sample have mindfulness
2-there are no differences in mindfulness among university students in terms of the variable of gender (male-female) and academical disciplines (humanities-sciences) and the reaction between them .
3- there is a positive relationship between mindfulness and self-regulated learning in which as self-regulated learning increases,mindfulness increases within university students .
And the study concluded with a number of conclusions and recommendations and proposals.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 23 2025
Journal Name
Journal Of Sport Science Technology And Physical Activities
The Effect of Flipped Learning on Overhand Serve Skill Acquisition in Volleyball
...Show More Authors

The study aimed to determine the effect of the flipped learning model in improving the acquisition of the overhand serve skill in volleyball among second-year students at the College of Physical Education and Sport Sciences, University of Baghdad, for the academic year 2024/2025. The study used an experimental design with a control group and pre-post testing, on a purposive sample consisting of 12 students. The model relied on watching short videos before class via the SGS application, and practical application in class at a rate of three sessions per week. The results showed a significant improvement in performance, as the calculated value (t = 5.356) exceeded the tabulated value (2.042) at a significance level of 0.05. The percentage of s

... Show More
Publication Date
Fri Feb 04 2022
Journal Name
Neuroquantology
Detecting Damaged Buildings on Post-Hurricane Satellite Imagery based on Transfer Learning
...Show More Authors

In this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Mon Mar 31 2025
Journal Name
International Journal Of Advanced Technology And Engineering Exploration
Breast cancer survival rate prediction using multimodal deep learning with multigenetic features
...Show More Authors

Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Traitement Du Signal
A Comprehensive Review on Machine Learning Approaches for Enhancing Human Speech Recognition
...Show More Authors

View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jun 16 2021
Journal Name
Cognitive Computation
Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
...Show More Authors
Abstract <p>Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b</p> ... Show More
View Publication
Scopus (44)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (32)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Sentiment analysis in arabic language using machine learning: Iraqi dialect case study
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Mon Nov 21 2022
Journal Name
Sensors
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes

... Show More
View Publication
Scopus (32)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Mon Apr 26 2021
Journal Name
Journal Of Electrical Engineering &amp; Technology
ANFIS Based Reinforcement Learning Strategy for Control A Nonlinear Coupled Tanks System
...Show More Authors

View Publication
Scopus (13)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Apr 02 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Traffic Classification of IoT Devices by Utilizing Spike Neural Network Learning Approach
...Show More Authors

Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas

... Show More
View Publication
Scopus (10)
Crossref (8)
Scopus Crossref