Preferred Language
Articles
/
jcoeduw-826
Minimum Spanning Tree Algorithm for Skin Cancer Image Object Detection

This paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that the
proposedmethod obtained very good results but it requires more testing on different types of Skin
Cancer Images.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
Online Sumarians Cuneiform Detection Based on Symbol Structural Vector Algorithm

The cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.

View Publication Preview PDF
Publication Date
Mon Dec 06 2021
Journal Name
Iraqi Journal Of Science
A Proposed Background Modeling Algorithm for Moving Object Detection Using Statistical Measures

Extracting moving object from video sequence is one of the most important steps
in the video-based analysis. Background subtraction is the most commonly used
moving object detection methods in video, in which the extracted object will be
feed to a higher-level process ( i.e. object localization, object tracking ).
The main requirement of background subtraction method is to construct a
stationary background model and then to compare every new coming frame with it
in order to detect the moving object.
Relied on the supposition that the background occurs with the higher appearance
frequency, a proposed background reconstruction algorithm has been presented
based on pixel intensity classification ( PIC ) approach.

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 24 2024
Journal Name
Journal Of Plant Protection Research
Developing smart sprayer for weed control using an object detection algorithm (yolov5)

Spraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...

View Publication
Publication Date
Sun Feb 10 2019
Journal Name
Journal Of The College Of Education For Women
Ciphered Text Hiding in an Image using RSA algorithm

In this paper, a method for hiding cipher text in an image file is introduced . The
proposed method is to hide the cipher text message in the frequency domain of the image.
This method contained two phases: the first is embedding phase and the second is extraction
phase. In the embedding phase the image is transformed from time domain to frequency
domain using discrete wavelet decomposition technique (Haar). The text message encrypted
using RSA algorithm; then Least Significant Bit (LSB) algorithm used to hide secret message
in high frequency. The proposed method is tested in different images and showed success in
hiding information according to the Peak Signal to Noise Ratio (PSNR) measure of the the
original ima

... Show More
View Publication Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
Evaluation Tv- Image Quality for Different Cable Signal Transmission Resistance Based on Contrast Edge Algorithm

Some degree of noise is always present in any electronic device that
transmits or receives a signal . For televisions, this signal i has been to s the
broadcast data transmitted over cable-or received at the antenna; for digital
cameras, the signal is the light which hits the camera sensor. At any case, noise
is unavoidable. In this paper, an electronic noise has been generate on
TV-satellite images by using variable resistors connected to the transmitting cable
. The contrast of edges has been determined. This method has been applied by
capturing images from TV-satellite images (Al-arabiya channel) channel with
different resistors. The results show that when increasing resistance always
produced higher noise f

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Breast Cancer Detection using Decision Tree and K-Nearest Neighbour Classifiers

      Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the  most effective parameter, particularly when Age<49.5. Whereas  Ki67  appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum err

... Show More
Scopus (4)
Crossref (6)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Breast Cancer Detection using Decision Tree and K-Nearest Neighbour Classifiers

      Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the  most effective parameter, particularly when Age<49.5. Whereas  Ki67  appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu

... Show More
Scopus (4)
Crossref (6)
Scopus Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Baghdad Science Journal
Minimum Neighborhood Domination of Split Graph of Graphs

Let  be a non-trivial simple graph. A dominating set in a graph is a set of vertices such that every vertex not in the set is adjacent to at least one vertex in the set. A subset  is a minimum neighborhood dominating set if  is a dominating set and if for every  holds. The minimum cardinality of the minimum neighborhood dominating set of a graph  is called as minimum neighborhood dominating number and it is denoted by  . A minimum neighborhood dominating set is a dominating set where the intersection of the neighborhoods of all vertices in the set is as small as possible, (i.e., ). The minimum neighborhood dominating number, denoted by , is the minimum cardinality of a minimum neighborhood dominating set. In other words, it is the

... Show More
Scopus (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
A Prediction of Skin Cancer using Mean-Shift Algorithm with Deep Forest Classifier

      Skin cancer is the most serious health problems in the globe because of its high occurrence compared to other types of cancer. Melanoma and non-melanoma are the two most common kinds of skin cancer. One of the most difficult problems in medical image processing is the automatic detection of skin cancer. Skin melanoma is classified as either benign or malignant based on the results of this test. Impediment due to artifacts in dermoscopic images impacts the analytic activity and decreases the precision level. In this research work, an automatic technique including segmentation and classification is proposed. Initially, pre-processing technique called DullRazor tool is used for hair removal process and semi-supervised mean-shift

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Dec 12 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Barriers to Baseline Needs for Early Detection of Breast Cancer among Iraqi Female Patients

Background: Breast Cancer is the most common malignancy among the Iraqi population; the majority of cases are still diagnosed at advanced stages with poor prospects of cure. Early detection through promoting public awareness is one of the promising tools in its control. Objectives: To evaluate the baseline needs for breast cancer awareness in Iraq through exploring level of knowledge, beliefs and behavior towards the disease and highlighting barriers to screening among a sample of Iraqi women complaining of breast cancer. Methodology: Two-hundred samples were enrolled in this study; gathered from the National

... Show More
View Publication Preview PDF