ملخص البحث
تبحث الدراسھ عن تنفیذ افضل لمفھوم التعلم مدى الحیاة كھیكل موجھ للسیاسة التربویة في العراق بشكل عام وفي
التعلیم العالي بشكل خاص. تحدد الدراسة استراتجیات التعلم مدى الحیاة وتناقش اھمیتھ وسماتھ الرئیسیة لتسھیل
الوصول الى فرص تعلم متمیز و ملائم لحاجات الطلبة مدى الحیاة، كما تناقش دور الجامعة في تحقیق ھذا الھدف.
This paper is a review of the genus Sitta in Iraq, Five species of this genus are recognized
Sitta kurdistanica, S. neumayr, S. europaea, S.dresseri and S. tephronota. Geographical
distribution and systematic nots were given for separation and identification, also some notes
on nest building and nest sites of S. tephronota supporting by figures are presented.
The aim of the study was to know the factors analysis of scale Bar-On & Parker, post analysis is found fourteen factors for the first degree of the scale. Also we extracted five factors from the second degree.
The scale consists of (60) items , applied on sample of (200) students (Male &Female ) age (15-18) years randomly chosen from preparatory schools . The scale unveiled satis factors validity and reliability. An others aims is to low the emotional Intelligence level and know the difference of statistical in sex , age variable and the specialization variable .The result was no difference of statistical in sex and specialization variable , but the difference appear
... Show MoreThe study aims to identify the theoretical literature for all the variables of the study (ICT, GDP) as well as to identify the practical side of the impact of ICT on the per capita GDP in Iraq for the period (2004-2021). The study was based on the hypothesis that ICT impacts per capita GDP in Iraq. The problem of the study was to answer the question: does ICT contribute to per capita GDP? The study concluded that an increase in the rate of internet users per 100 people by one unit would increase. Increasing the landline telephone rate per 100 people by one unit will increase GDP per capita. In addition, increasing the mobile phone rate per 100 people by one unit will increase GDP per capita. The study recommended adopting rational poli
... Show MoreResumen
El presente trabajo nace de una inquietud por la enseñanza del español en Irak a nivel universitario especialmente ante las dificultades que los alumnos árabes en general, e iraquíes en particular, encuentran en su proceso de aprendizaje. Nuestra primera inclinación fue, pues, prestar una atención directa y cercana al alumno como sujeto del aprendizaje, así como a lo que el alumno produce como resultado del mismo. En el presente trabajo pretendemos dotar al estudiante de los conocimientos lingüísticos necesarios para poder interaccionar en una variedad de situaciones y enfrentarse a problemas cotidianos, de manera que desarrolle las destrezas comunicativas que le permitan establecer una co
... Show MoreThe surplus glycerol produced from biodiesel production process as a by-product with high quantity can be considered as a good source to prepare glycerol carbonate (GC) whereas with each 1000 kg from biodiesel obtains 100 kg from glycerol. Glycerol converted to glycerol carbonate over bio-char as a catalyst prepared by slow pyrolysis process under various temperatures from 400 ᴼC to 800 ᴼC. The char prepared at 700 ᴼC considered as a best one between the others which was manufactured to activate the transesterification reaction. GC have large scale of uses such as liquid membrane in gas separation, surfactants ,detergents , blowing agent , in plastics industry, in Pharmaceutical industry and electrolytes in lithium batteries.
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More