In this paper, an algorithm through which we can embed more data than the
regular methods under spatial domain is introduced. We compressed the secret data
using Huffman coding and then this compressed data is embedded using laplacian
sharpening method.
We used Laplace filters to determine the effective hiding places, then based on
threshold value we found the places with the highest values acquired from these filters
for embedding the watermark. In this work our aim is increasing the capacity of
information which is to be embedded by using Huffman code and at the same time
increasing the security of the algorithm by hiding data in the places that have highest
values of edges and less noticeable.
The performance of the proposed algorithm is evaluated using detection
techniques such as Peak Signal- to- Noise Ratio (PSNR) to measure the distortion,
Similarity Correlation between the cover-image and watermarked image, and Bit
Error Rate (BER) is used to measure the robustness. The sensitivity against attacks on
the watermarked image is investigated. The types of attacks applied are: Laplacian
sharpening, Median filtering, Salt & Peppers Noise and Rotating attack. The results
show that the proposed algorithm can resist Laplacain sharpening with any sharpening
parameter k, besides laplacian good result according to some other types of attacks is
achieved.
In the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each MMS rather t
... Show MoreThe most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri
... Show MoreNeighShrink is an efficient image denoising algorithm based on the discrete wavelet
transform (DWT). Its disadvantage is to use a suboptimal universal threshold and identical
neighbouring window size in all wavelet subbands. Dengwen and Wengang proposed an
improved method, which can determine an optimal threshold and neighbouring window size
for every subband by the Stein’s unbiased risk estimate (SURE). Its denoising performance is
considerably superior to NeighShrink and also outperforms SURE-LET, which is an up-todate
denoising algorithm based on the SURE. In this paper different wavelet transform
families are used with this improved method, the results show that Haar wavelet has the
lowest performance among
WA Shukur, FA Abdullatif, Ibn Al-Haitham Journal For Pure and Applied Sciences, 2011 With wide spread of internet, and increase the price of information, steganography become very important to communication. Over many years used different types of digital cover to hide information as a cover channel, image from important digital cover used in steganography because widely use in internet without suspicious.
Subcutaneous vascularization has become a new solution for identification management over the past few years. Systems based on dorsal hand veins are particularly promising for high-security settings. The dorsal hand vein recognition system comprises the following steps: acquiring images from the database and preprocessing them, locating the region of interest, and extracting and recognizing information from the dorsal hand vein pattern. This paper reviewed several techniques for obtaining the dorsal hand vein area and identifying a person. Therefore, this study just provides a comprehensive review of existing previous theories. This model aims to offer the improvement in the accuracy rate of the system that was shown in previous studies and
... Show MoreImage Fusion Using A Convolutional Neural Network
This research aims to know the intellectual picture the displaced people formed about aid organizations and determine whether they were positive or negative, the researchers used survey tool as standard to study the society represented by displaced people living in Baghdad camps from Shiites, Sunnis, Shabak, Turkmen, Christians, and Ezidis.
The researcher reached to important results and the most important thing he found is that displaced people living in camps included in this survey hold a positive opinion about organizations working to meet their demands but they complain about the shortfall in the health care side.
The research also found that displaced people from (Shabak, Turkmen, and Ezidi) minorities see that internati
With the continuous progress of image retrieval technology, the speed of searching for the required image from a large amount of image data has become an important issue. Convolutional neural networks (CNNs) have been used in image retrieval. However, many image retrieval systems based on CNNs have poor ability to express image features. Content-based Image Retrieval (CBIR) is a method of finding desired images from image databases. However, CBIR suffers from lower accuracy in retrieving images from large-scale image databases. In this paper, the proposed system is an improvement of the convolutional neural network for greater accuracy and a machine learning tool that can be used for automatic image retrieval. It includes two phases
... Show MoreIn this paper, membrane-based computing image segmentation, both region-based and edge-based, is proposed for medical images that involve two types of neighborhood relations between pixels. These neighborhood relations—namely, 4-adjacency and 8-adjacency of a membrane computing approach—construct a family of tissue-like P systems for segmenting actual 2D medical images in a constant number of steps; the two types of adjacency were compared using different hardware platforms. The process involves the generation of membrane-based segmentation rules for 2D medical images. The rules are written in the P-Lingua format and appended to the input image for visualization. The findings show that the neighborhood relations between pixels o
... Show More