A computerized investigation has been carried out to design an immersion lens
with low aberration operating under zero magnification condition using inverse problem.
The aberration is highly dependent on the shape of electrodes, for a preassigned electron
beam trajectory the paraxial-ray-equation is solved to determine the electrostatic potential
and field distribution.
From the knowledge of the potential and its first and second derivative the
electron optical properties were computed, the electrode geometry was determined from
the solution of Laplace equation.
The current research dealt with the development of sciences and arts over the course of human history, and the development of sciences with their natural and human trends are important areas in developing the knowledge and application base for industrial product design and design in its various fields. Bionic science is one of the sciences that works on applying biological methods and systems found in nature to study and design engineering systems and modern technology, and for industrial products to be highly efficient, durable and resistant to natural variables in daily life for use. The transfer of technology between life forms and industrial products is desirable because the processes of development at the level of science in general
... Show MoreOne of the most important human diseases that need to be considered in terms of development of the medical engineering devices is cardiovascular disease which is a significant cause of death globally recently. Valvular heart disease is normally treated by restoring or altering heart valves with an artificial one. But the new prosthetic valve designs necessitate testing for durability estimate and failure method. It is significant to simulate the circulation system by the building of a pulse duplicator system. This study is stated by clarifying the parameter and implementation steps of the pulse duplicator system in which the different researchers have utilized the system and tried to explain the design steps of using this system wit
... Show MoreB3LYP/6-31G, DFT method was applied to hypothetical study the design of six carbon nanotube materials based on [8]circulene, through the use of cyclic polymerization of two and three molecules of [8]circulene. Optimized structures of [8]circulene have saddle-shaped. Design of six carbon nanotubes reactions were done by thermodynamically calculating (Δ S, Δ G and Δ H) and the stability of these hypothetical nanotubes depending on the value of HOMO energy level. Nanotubes obtained have the most efficient gap energy, making them potentially useful for solar cell applications.
Applications of nonlinear, time variant, and variable parameters represent a big challenge in a conventional control systems, the control strategy of the fuzzy systems may be represents a simple, a robust and an intelligent solution for such applications.
This paper presents a design of fuzzy control system that consists of three sub controllers; a fuzzy temperature controller (FC_T), a fuzzy humidity controller (FC_H) and a ventilation control system; to control the complicate environment of the greenhouse (GH) using a proposed multi-choice control system approach. However, to reduce the cost of the crop production in the GH, the first choice is using the ventilation system to control the temperature and humidit
... Show MoreThe characterization and design of this study of new liquid crystals with a V shape compounds containing thiazolidine-2,4-dione and 1,3-phenylene as a core unite with mesophase properties were reported. Preparation and characterization of chloroacetic acid, water, and thiourea to produce thiazolidine-2,4-dione [I] in the presence of strong hydrochloric acid. The 4-hydreoxybenzaldehyde and n-alkyl bromide were reacted with potassium hydroxide to create the n-alkoxy benzaldehyde., then the compound [I] reacted with [II]n in presence of piperidine to produce compounds [III]n. Also, converted resorcinol to a corresponding compound [IV] by refl
... Show MoreThis article will address autoclave design considerations and
manufacturing working with high pressure low temperature
supercritical drying technique to produce silica aerogel. The design
elects carbon dioxide as a supercritical fluid (31.7 oC and 72.3 bar).
Both temperature and pressure have independently controlling
facility through present design. The autoclave was light weight (4.5
kg) and factory-made from stainless steel. It contains a high pressure
window for monitoring both transfer carbon dioxide gas to liquid
carbon dioxide and watching supercritical drying via aerogel
preparation process. In this work aerogel samples were prepared and
the true apparent densities, total pore volume and pore size
This paper proposes a compact, plasmonic-based 4 × 4 nonblocking switch for optical networks. This device uses six 2 × 2 plasmonic Mach-Zehnder switch (MZS), whose arm waveguide is supported by a JRD1 polymer layer as a high electro-optic coefficient material. The 4 × 4 switch is designed in COMSOL environment for 1550 nm wavelength operation. The performance of the proposed switch outperforms those of conventional (nonplasmonic) counterparts. The designed switch yields a compact structure ( 500 × 70 µ m 2 ) having V π L = 12 V · µ m , 1.5 THz optical bandwidth, 7.7 dB insertion loss, and −26.5 dB crosstalk. The capability of the switch to route 8 × 40 Gbps WDM signal is demonstrated successfully.
... Show MoreAmong the available chaotic modulation schemes, differential chaos shift keying (DSCK) offers the perfect noise performance. The power consumption of DCSK is high since it sends chaotic signal in both of 1 and 0 transmission, so it does not represent the optimal choice for some applications like indoor wireless sensing where power consumption is a critical issue. In this paper a novel noncoherent chaotic communication scheme called differential chaos on-off keying (DCOOK) is proposed as a solution of this problem. With the proposed scheme, the DCOOK signal have a structure similar to chaos on-off keying (COOK) scheme with improved performance in noisy and multipath channels by introducing the concept of differential coherency used in DCS
... Show MoreSCADA is the technology that allows the operator to gather data from one or more various facilities and to send control instructions to those facilities. This paper represents an adaptable and low cost SCADA system for a particular sugar manufacturing process, by using Programmable Logic Controls (Siemens s7-1200, 1214Dc/ Dc/ Rly). The system will control and monitor the laboratory production line chose from sugar industry. The project comprises of two sections the first one is the hardware section that has been designed, and built using components suitable for making it for laboratory purposes, and the second section was the software as the PLC programming, designing the HMI, creating alarms and trending system. The system will ha
... Show More